© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a130
L11a130
L11a132
L11a132
L11a131
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a131

Visit L11a131's page at Knotilus!

Acknowledgement

L11a131 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,4,15,3 X20,8,21,7 X22,10,5,9 X8,22,9,21 X18,12,19,11 X16,14,17,13 X12,18,13,17 X10,20,11,19 X2536 X4,16,1,15

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -5, 4, -9, 6, -8, 7, -2, 11, -7, 8, -6, 9, -3, 5, -4}}

Jones Polynomial: - q-1/2 + q1/2 - 4q3/2 + 5q5/2 - 8q7/2 + 10q9/2 - 10q11/2 + 9q13/2 - 7q15/2 + 5q17/2 - 3q19/2 + q21/2

A2 (sl(3)) Invariant: q-2 + 1 + 2q2 + 4q4 + q6 + 3q8 + q10 - 2q12 - 2q16 - q22 + 2q24 - q26 + q30 - q32

HOMFLY-PT Polynomial: a-9z + a-9z3 - a-7z - 2a-7z3 - a-7z5 + a-5z-1 + a-5z - a-5z3 - a-5z5 - 3a-3z-1 - 4a-3z - 3a-3z3 - a-3z5 + 2a-1z-1 + 3a-1z + a-1z3

Kauffman Polynomial: - a-12z2 + 3a-12z4 - a-12z6 - 6a-11z3 + 10a-11z5 - 3a-11z7 + 3a-10z2 - 12a-10z4 + 14a-10z6 - 4a-10z8 - 2a-9z + 7a-9z3 - 11a-9z5 + 10a-9z7 - 3a-9z9 + a-8z2 - 7a-8z4 + 6a-8z6 - a-8z10 - 2a-7z + 13a-7z3 - 24a-7z5 + 15a-7z7 - 4a-7z9 - a-6 - a-6z2 + 6a-6z4 - 8a-6z6 + 3a-6z8 - a-6z10 + a-5z-1 - 2a-5z + 3a-5z3 - 3a-5z5 + a-5z7 - a-5z9 - 3a-4 + 5a-4z2 - a-4z4 - a-4z8 + 3a-3z-1 - 7a-3z + 7a-3z3 - a-3z5 - a-3z7 - 3a-2 + 3a-2z2 + a-2z4 - a-2z6 + 2a-1z-1 - 5a-1z + 4a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 22           1
j = 20          2 
j = 18         31 
j = 16        42  
j = 14       53   
j = 12      54    
j = 10     55     
j = 8    35      
j = 6   25       
j = 4  23        
j = 2 14         
j = 0            
j = -21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 131]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 131]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 4, 15, 3], X[20, 8, 21, 7], X[22, 10, 5, 9], 
 
>   X[8, 22, 9, 21], X[18, 12, 19, 11], X[16, 14, 17, 13], X[12, 18, 13, 17], 
 
>   X[10, 20, 11, 19], X[2, 5, 3, 6], X[4, 16, 1, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -5, 4, -9, 6, -8, 7, -2, 11, -7, 8, -6, 
 
>    9, -3, 5, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                    3/2      5/2      7/2       9/2       11/2
-(-------) + Sqrt[q] - 4 q    + 5 q    - 8 q    + 10 q    - 10 q     + 
  Sqrt[q]
 
       13/2      15/2      17/2      19/2    21/2
>   9 q     - 7 q     + 5 q     - 3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -2      2      4    6      8    10      12      16    22      24    26
1 + q   + 2 q  + 4 q  + q  + 3 q  + q   - 2 q   - 2 q   - q   + 2 q   - q   + 
 
     30    32
>   q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 131]][a, z]
Out[8]=   
                                                3      3    3      3    3
 1      3      2    z    z    z    4 z   3 z   z    2 z    z    3 z    z
---- - ---- + --- + -- - -- + -- - --- + --- + -- - ---- - -- - ---- + -- - 
 5      3     a z    9    7    5    3     a     9     7     5     3    a
a  z   a  z         a    a    a    a           a     a     a     a
 
     5    5    5
    z    z    z
>   -- - -- - --
     7    5    3
    a    a    a
In[9]:=
Kauffman[Link[11, Alternating, 131]][a, z]
Out[9]=   
                                                                    2       2
  -6   3    3     1      3      2    2 z   2 z   2 z   7 z   5 z   z     3 z
-a   - -- - -- + ---- + ---- + --- - --- - --- - --- - --- - --- - --- + ---- + 
        4    2    5      3     a z    9     7     5     3     a     12    10
       a    a    a  z   a  z         a     a     a     a           a     a
 
     2    2      2      2      3      3       3      3      3      3      4
    z    z    5 z    3 z    6 z    7 z    13 z    3 z    7 z    4 z    3 z
>   -- - -- + ---- + ---- - ---- + ---- + ----- + ---- + ---- + ---- + ---- - 
     8    6     4      2     11      9      7       5      3     a      12
    a    a     a      a     a       a      a       a      a            a
 
        4      4      4    4    4       5       5       5      5    5    5
    12 z    7 z    6 z    z    z    10 z    11 z    24 z    3 z    z    z
>   ----- - ---- + ---- - -- + -- + ----- - ----- - ----- - ---- - -- - -- - 
      10      8      6     4    2     11      9       7       5     3   a
     a       a      a     a    a     a       a       a       a     a
 
     6        6      6      6    6      7       7       7    7    7      8
    z     14 z    6 z    8 z    z    3 z    10 z    15 z    z    z    4 z
>   --- + ----- + ---- - ---- - -- - ---- + ----- + ----- + -- - -- - ---- + 
     12     10      8      6     2    11      9       7      5    3    10
    a      a       a      a     a    a       a       a      a    a    a
 
       8    8      9      9    9    10    10
    3 z    z    3 z    4 z    z    z     z
>   ---- - -- - ---- - ---- - -- - --- - ---
      6     4     9      7     5    8     6
     a     a     a      a     a    a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                       2
   2      4     1     q       4        6        6  2      8  2      8  3
4 q  + 2 q  + ----- + -- + 3 q  t + 2 q  t + 5 q  t  + 3 q  t  + 5 q  t  + 
               2  2   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5      14  6
>   5 q   t  + 5 q   t  + 5 q   t  + 4 q   t  + 5 q   t  + 3 q   t  + 
 
       16  6      16  7      18  7    18  8      20  8    22  9
>   4 q   t  + 2 q   t  + 3 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a131
L11a130
L11a130
L11a132
L11a132