© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a128
L11a128
L11a130
L11a130
L11a129
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a129

Visit L11a129's page at Knotilus!

Acknowledgement

L11a129 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,3,15,4 X18,10,19,9 X16,12,17,11 X12,16,13,15 X10,18,11,17 X22,19,5,20 X20,7,21,8 X8,21,9,22 X2536 X4,13,1,14

Gauss Code: {{1, -10, 2, -11}, {10, -1, 8, -9, 3, -6, 4, -5, 11, -2, 5, -4, 6, -3, 7, -8, 9, -7}}

Jones Polynomial: q-17/2 - 2q-15/2 + 4q-13/2 - 7q-11/2 + 8q-9/2 - 11q-7/2 + 10q-5/2 - 9q-3/2 + 7q-1/2 - 5q1/2 + 3q3/2 - q5/2

A2 (sl(3)) Invariant: - q-28 - 2q-26 + 4q-18 + 2q-16 + 2q-14 + 3q-12 + 2q-8 - q-6 + q-2 - 2 + q2 - q6 + q8

HOMFLY-PT Polynomial: - a-1z - a-1z3 + az + 2az3 + az5 + a3z3 + a3z5 - 2a5z-1 - 5a5z - 3a5z3 + 3a7z-1 + 3a7z - a9z-1

Kauffman Polynomial: a-1z - 4a-1z3 + 4a-1z5 - a-1z7 + 5z2 - 15z4 + 13z6 - 3z8 - az3 - 8az5 + 11az7 - 3az9 + 7a2z2 - 23a2z4 + 19a2z6 - 2a2z8 - a2z10 - a3z + 6a3z3 - 16a3z5 + 17a3z7 - 5a3z9 + 2a4z2 - 7a4z4 + 8a4z6 - a4z8 - a4z10 + 2a5z-1 - 5a5z + 7a5z3 - 4a5z5 + 3a5z7 - 2a5z9 - 3a6 + 3a6z2 + a6z4 - 2a6z8 + 3a7z-1 - 7a7z + 7a7z3 - 2a7z5 - 2a7z7 - 3a8 + 5a8z2 - a8z4 - 2a8z6 + a9z-1 - 2a9z + 3a9z3 - 2a9z5 - a10 + 2a10z2 - a10z4

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 6           1
j = 4          2 
j = 2         31 
j = 0        42  
j = -2       53   
j = -4      65    
j = -6     54     
j = -8    36      
j = -10   45       
j = -12  14        
j = -14 13         
j = -16 1          
j = -181           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 129]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 129]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[18, 10, 19, 9], X[16, 12, 17, 11], 
 
>   X[12, 16, 13, 15], X[10, 18, 11, 17], X[22, 19, 5, 20], X[20, 7, 21, 8], 
 
>   X[8, 21, 9, 22], X[2, 5, 3, 6], X[4, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 8, -9, 3, -6, 4, -5, 11, -2, 5, -4, 6, -3, 
 
>    7, -8, 9, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(17/2)     2       4       7      8      11     10     9        7
q        - ----- + ----- - ----- + ---- - ---- + ---- - ---- + ------- - 
            15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q       q      q      q      q
 
                   3/2    5/2
>   5 Sqrt[q] + 3 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -28    2     4     2     2     3    2     -6    -2    2    6    8
-2 - q    - --- + --- + --- + --- + --- + -- - q   + q   + q  - q  + q
             26    18    16    14    12    8
            q     q     q     q     q     q
In[8]:=
HOMFLYPT[Link[11, Alternating, 129]][a, z]
Out[8]=   
    5      7    9                                3
-2 a    3 a    a    z            5        7     z         3    3  3      5  3
----- + ---- - -- - - + a z - 5 a  z + 3 a  z - -- + 2 a z  + a  z  - 3 a  z  + 
  z      z     z    a                           a
 
       5    3  5
>   a z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 129]][a, z]
Out[9]=   
                        5      7    9
    6      8    10   2 a    3 a    a    z    3        5        7        9
-3 a  - 3 a  - a   + ---- + ---- + -- + - - a  z - 5 a  z - 7 a  z - 2 a  z + 
                      z      z     z    a
 
                                                                 3
       2      2  2      4  2      6  2      8  2      10  2   4 z       3
>   5 z  + 7 a  z  + 2 a  z  + 3 a  z  + 5 a  z  + 2 a   z  - ---- - a z  + 
                                                               a
 
       3  3      5  3      7  3      9  3       4       2  4      4  4
>   6 a  z  + 7 a  z  + 7 a  z  + 3 a  z  - 15 z  - 23 a  z  - 7 a  z  + 
 
                                5
     6  4    8  4    10  4   4 z         5       3  5      5  5      7  5
>   a  z  - a  z  - a   z  + ---- - 8 a z  - 16 a  z  - 4 a  z  - 2 a  z  - 
                              a
 
                                                      7
       9  5       6       2  6      4  6      8  6   z          7       3  7
>   2 a  z  + 13 z  + 19 a  z  + 8 a  z  - 2 a  z  - -- + 11 a z  + 17 a  z  + 
                                                     a
 
       5  7      7  7      8      2  8    4  8      6  8        9      3  9
>   3 a  z  - 2 a  z  - 3 z  - 2 a  z  - a  z  - 2 a  z  - 3 a z  - 5 a  z  - 
 
       5  9    2  10    4  10
>   2 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
5    5      1        1        1        3        1        4        4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    18  7    16  6    14  6    14  5    12  5    12  4    10  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      5        3       6       5      4      6           3 t      2      2  2
>   ------ + ----- + ----- + ----- + ---- + ---- + 4 t + --- + 2 t  + 3 q  t  + 
     10  3    8  3    8  2    6  2    6      4            2
    q   t    q  t    q  t    q  t    q  t   q  t         q
 
     2  3      4  3    6  4
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a129
L11a128
L11a128
L11a130
L11a130