© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a119
L11a119
L11a121
L11a121
L11a120
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a120

Visit L11a120's page at Knotilus!

Acknowledgement

L11a120 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,3,15,4 X22,15,5,16 X18,7,19,8 X10,21,11,22 X20,11,21,12 X12,19,13,20 X16,9,17,10 X8,17,9,18 X2536 X4,13,1,14

Gauss Code: {{1, -10, 2, -11}, {10, -1, 4, -9, 8, -5, 6, -7, 11, -2, 3, -8, 9, -4, 7, -6, 5, -3}}

Jones Polynomial: q-25/2 - 2q-23/2 + 5q-21/2 - 8q-19/2 + 11q-17/2 - 13q-15/2 + 12q-13/2 - 13q-11/2 + 9q-9/2 - 6q-7/2 + 3q-5/2 - q-3/2

A2 (sl(3)) Invariant: - q-40 - 2q-38 - 2q-34 - 3q-32 + 3q-30 + q-26 + 4q-24 + q-22 + 4q-20 + q-18 + 2q-16 + 2q-14 - 3q-12 + 2q-10 + q-8 - 2q-6 + q-4

HOMFLY-PT Polynomial: - a3z3 - a5z - 3a5z3 - 2a7z-1 - 6a7z - 5a7z3 + 2a9z-1 + 2a9z - 2a9z3 + a11z-1 + 3a11z - a13z-1

Kauffman Polynomial: - a3z3 - 3a4z4 - a5z + 4a5z3 - 6a5z5 - a6z2 + 11a6z4 - 9a6z6 - 2a7z-1 + 8a7z - 20a7z3 + 28a7z5 - 12a7z7 + 2a8 - a8z2 - 10a8z4 + 24a8z6 - 10a8z8 - 2a9z-1 + 11a9z - 35a9z3 + 28a9z5 + 4a9z7 - 5a9z9 - 4a10 + 26a10z2 - 65a10z4 + 54a10z6 - 11a10z8 - a10z10 + a11z-1 + 2a11z - 2a11z3 - 22a11z5 + 26a11z7 - 7a11z9 - 9a12 + 38a12z2 - 54a12z4 + 27a12z6 - 2a12z8 - a12z10 + a13z-1 + 8a13z3 - 16a13z5 + 10a13z7 - 2a13z9 - 4a14 + 12a14z2 - 13a14z4 + 6a14z6 - a14z8

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2           1
j = -4          31
j = -6         3  
j = -8        63  
j = -10       73   
j = -12      67    
j = -14     76     
j = -16    46      
j = -18   47       
j = -20  14        
j = -22 14         
j = -24 1          
j = -261           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 120]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 120]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[22, 15, 5, 16], X[18, 7, 19, 8], 
 
>   X[10, 21, 11, 22], X[20, 11, 21, 12], X[12, 19, 13, 20], X[16, 9, 17, 10], 
 
>   X[8, 17, 9, 18], X[2, 5, 3, 6], X[4, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 4, -9, 8, -5, 6, -7, 11, -2, 3, -8, 9, -4, 
 
>    7, -6, 5, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(25/2)     2       5       8      11      13      12      13      9
q        - ----- + ----- - ----- + ----- - ----- + ----- - ----- + ---- - 
            23/2    21/2    19/2    17/2    15/2    13/2    11/2    9/2
           q       q       q       q       q       q       q       q
 
     6      3      -(3/2)
>   ---- + ---- - q
     7/2    5/2
    q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -40    2     2     3     3     -26    4     -22    4     -18    2     2
-q    - --- - --- - --- + --- + q    + --- + q    + --- + q    + --- + --- - 
         38    34    32    30           24           20           16    14
        q     q     q     q            q            q            q     q
 
     3     2     -8   2     -4
>   --- + --- + q   - -- + q
     12    10          6
    q     q           q
In[8]:=
HOMFLYPT[Link[11, Alternating, 120]][a, z]
Out[8]=   
    7      9    11    13
-2 a    2 a    a     a      5        7        9        11      3  3      5  3
----- + ---- + --- - --- - a  z - 6 a  z + 2 a  z + 3 a   z - a  z  - 3 a  z  - 
  z      z      z     z
 
       7  3      9  3
>   5 a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 120]][a, z]
Out[9]=   
                                  7      9    11    13
   8      10      12      14   2 a    2 a    a     a      5        7
2 a  - 4 a   - 9 a   - 4 a   - ---- - ---- + --- + --- - a  z + 8 a  z + 
                                z      z      z     z
 
        9        11      6  2    8  2       10  2       12  2       14  2
>   11 a  z + 2 a   z - a  z  - a  z  + 26 a   z  + 38 a   z  + 12 a   z  - 
 
     3  3      5  3       7  3       9  3      11  3      13  3      4  4
>   a  z  + 4 a  z  - 20 a  z  - 35 a  z  - 2 a   z  + 8 a   z  - 3 a  z  + 
 
        6  4       8  4       10  4       12  4       14  4      5  5
>   11 a  z  - 10 a  z  - 65 a   z  - 54 a   z  - 13 a   z  - 6 a  z  + 
 
        7  5       9  5       11  5       13  5      6  6       8  6
>   28 a  z  + 28 a  z  - 22 a   z  - 16 a   z  - 9 a  z  + 24 a  z  + 
 
        10  6       12  6      14  6       7  7      9  7       11  7
>   54 a   z  + 27 a   z  + 6 a   z  - 12 a  z  + 4 a  z  + 26 a   z  + 
 
        13  7       8  8       10  8      12  8    14  8      9  9      11  9
>   10 a   z  - 10 a  z  - 11 a   z  - 2 a   z  - a   z  - 5 a  z  - 7 a   z  - 
 
       13  9    10  10    12  10
>   2 a   z  - a   z   - a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4    -2      1         1         1        4        1        4        4
q   + q   + ------- + ------- + ------- + ------ + ------ + ------ + ------ + 
             26  11    24  10    22  10    22  9    20  9    20  8    18  8
            q   t     q   t     q   t     q   t    q   t    q   t    q   t
 
      7        4        6        7        6        6        7        7
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     18  7    16  7    16  6    14  6    14  5    12  5    12  4    10  4
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      3        6       3       3      3
>   ------ + ----- + ----- + ----- + ----
     10  3    8  3    8  2    6  2    4
    q   t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a120
L11a119
L11a119
L11a121
L11a121