© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a11
L11a11
L11a13
L11a13
L11a12
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a12

Visit L11a12's page at Knotilus!

Acknowledgement

L11a12 as Morse Link
DrawMorseLink

PD Presentation: X6172 X20,7,21,8 X4,21,1,22 X14,12,15,11 X8493 X12,5,13,6 X22,13,5,14 X18,15,19,16 X16,9,17,10 X10,17,11,18 X2,20,3,19

Gauss Code: {{1, -11, 5, -3}, {6, -1, 2, -5, 9, -10, 4, -6, 7, -4, 8, -9, 10, -8, 11, -2, 3, -7}}

Jones Polynomial: - q-19/2 + 4q-17/2 - 8q-15/2 + 15q-13/2 - 21q-11/2 + 24q-9/2 - 25q-7/2 + 21q-5/2 - 17q-3/2 + 10q-1/2 - 5q1/2 + q3/2

A2 (sl(3)) Invariant: q-30 - 3q-26 + q-24 - q-22 - 4q-20 + 4q-18 - 3q-16 + 2q-14 + 2q-12 - q-10 + 7q-8 - 3q-6 + 5q-4 + 2q-2 - 2 + 3q2 - q4

HOMFLY-PT Polynomial: - az-1 - az + az3 + az5 - 2a3z - 4a3z3 - 3a3z5 - a3z7 + 2a5z-1 + 6a5z + 7a5z3 + 3a5z5 - a7z-1 - 4a7z - 3a7z3 + a9z

Kauffman Polynomial: z4 - z6 + az-1 - az - 5az3 + 10az5 - 5az7 - a2 + 2a2z2 - 10a2z4 + 19a2z6 - 9a2z8 + 4a3z - 18a3z3 + 21a3z5 + 3a3z7 - 7a3z9 + 3a4 - 27a4z4 + 47a4z6 - 18a4z8 - 2a4z10 - 2a5z-1 + 11a5z - 31a5z3 + 26a5z5 + 10a5z7 - 13a5z9 + 5a6 - 8a6z2 - 15a6z4 + 36a6z6 - 17a6z8 - 2a6z10 - a7z-1 + 8a7z - 24a7z3 + 25a7z5 - 5a7z7 - 6a7z9 + 2a8 - 9a8z2 + 7a8z4 + 5a8z6 - 8a8z8 + 2a9z - 5a9z3 + 9a9z5 - 7a9z7 - 3a10z2 + 6a10z4 - 4a10z6 + a11z3 - a11z5

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 4           1
j = 2          4 
j = 0         61 
j = -2        114  
j = -4       128   
j = -6      139    
j = -8     1112     
j = -10    1013      
j = -12   511       
j = -14  310        
j = -16 15         
j = -18 3          
j = -201           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 12]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 12]]
Out[4]=   
PD[X[6, 1, 7, 2], X[20, 7, 21, 8], X[4, 21, 1, 22], X[14, 12, 15, 11], 
 
>   X[8, 4, 9, 3], X[12, 5, 13, 6], X[22, 13, 5, 14], X[18, 15, 19, 16], 
 
>   X[16, 9, 17, 10], X[10, 17, 11, 18], X[2, 20, 3, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 5, -3}, {6, -1, 2, -5, 9, -10, 4, -6, 7, -4, 8, -9, 10, -8, 
 
>    11, -2, 3, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(19/2)     4       8      15      21      24     25     21     17
-q        + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + 
             17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
            q       q       q       q       q      q      q      q
 
      10                   3/2
>   ------- - 5 Sqrt[q] + q
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -30    3     -24    -22    4     4     3     2     2     -10   7    3
-2 + q    - --- + q    - q    - --- + --- - --- + --- + --- - q    + -- - -- + 
             26                  20    18    16    14    12           8    6
            q                   q     q     q     q     q            q    q
 
    5    2       2    4
>   -- + -- + 3 q  - q
     4    2
    q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 12]][a, z]
Out[8]=   
          5    7
  a    2 a    a             3        5        7      9        3      3  3
-(-) + ---- - -- - a z - 2 a  z + 6 a  z - 4 a  z + a  z + a z  - 4 a  z  + 
  z     z     z
 
       5  3      7  3      5      3  5      5  5    3  7
>   7 a  z  - 3 a  z  + a z  - 3 a  z  + 3 a  z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 12]][a, z]
Out[9]=   
                                  5    7
  2      4      6      8   a   2 a    a             3         5        7
-a  + 3 a  + 5 a  + 2 a  + - - ---- - -- - a z + 4 a  z + 11 a  z + 8 a  z + 
                           z    z     z
 
       9        2  2      6  2      8  2      10  2        3       3  3
>   2 a  z + 2 a  z  - 8 a  z  - 9 a  z  - 3 a   z  - 5 a z  - 18 a  z  - 
 
        5  3       7  3      9  3    11  3    4       2  4       4  4
>   31 a  z  - 24 a  z  - 5 a  z  + a   z  + z  - 10 a  z  - 27 a  z  - 
 
        6  4      8  4      10  4         5       3  5       5  5       7  5
>   15 a  z  + 7 a  z  + 6 a   z  + 10 a z  + 21 a  z  + 26 a  z  + 25 a  z  + 
 
       9  5    11  5    6       2  6       4  6       6  6      8  6
>   9 a  z  - a   z  - z  + 19 a  z  + 47 a  z  + 36 a  z  + 5 a  z  - 
 
       10  6        7      3  7       5  7      7  7      9  7      2  8
>   4 a   z  - 5 a z  + 3 a  z  + 10 a  z  - 5 a  z  - 7 a  z  - 9 a  z  - 
 
        4  8       6  8      8  8      3  9       5  9      7  9      4  10
>   18 a  z  - 17 a  z  - 8 a  z  - 7 a  z  - 13 a  z  - 6 a  z  - 2 a  z   - 
 
       6  10
>   2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
8    11     1        3        1        5        3        10       5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    20  8    18  7    16  7    16  6    14  6    14  5    12  5
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      11       10       13      11      12      13      9      12
>   ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + 6 t + 
     12  4    10  4    10  3    8  3    8  2    6  2    6      4
    q   t    q   t    q   t    q  t    q  t    q  t    q  t   q  t
 
    4 t    2      2  2    4  3
>   --- + t  + 4 q  t  + q  t
     2
    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a12
L11a11
L11a11
L11a13
L11a13