© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a109
L11a109
L11a111
L11a111
L11a110
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a110

Visit L11a110's page at Knotilus!

Acknowledgement

L11a110 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,4,15,3 X16,8,17,7 X18,10,19,9 X20,12,21,11 X22,14,5,13 X8,18,9,17 X10,20,11,19 X12,22,13,21 X2536 X4,16,1,15

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -7, 4, -8, 5, -9, 6, -2, 11, -3, 7, -4, 8, -5, 9, -6}}

Jones Polynomial: - q3/2 + q5/2 - 3q7/2 + 2q9/2 - 4q11/2 + 4q13/2 - 4q15/2 + 4q17/2 - 3q19/2 + 3q21/2 - 2q23/2 + q25/2

A2 (sl(3)) Invariant: q6 + q8 + 2q10 + 3q12 + 3q14 + 4q16 + 2q18 + 2q20 - q22 - q24 - 2q26 - 2q28 - q30 - q32 - q36

HOMFLY-PT Polynomial: 3a-9z-1 + 8a-9z + 11a-9z3 + 6a-9z5 + a-9z7 - 7a-7z-1 - 22a-7z - 31a-7z3 - 23a-7z5 - 8a-7z7 - a-7z9 + 4a-5z-1 + 14a-5z + 16a-5z3 + 7a-5z5 + a-5z7

Kauffman Polynomial: - a-16z2 - 2a-15z3 - a-14 + 3a-14z2 - 3a-14z4 + 4a-13z3 - 3a-13z5 + 6a-12z4 - 3a-12z6 - 4a-11z3 + 9a-11z5 - 3a-11z7 - 10a-10z4 + 12a-10z6 - 3a-10z8 + 3a-9z-1 - 12a-9z + 25a-9z3 - 31a-9z5 + 17a-9z7 - 3a-9z9 - 7a-8 + 23a-8z2 - 27a-8z4 + 7a-8z6 + 3a-8z8 - a-8z10 + 7a-7z-1 - 30a-7z + 65a-7z3 - 66a-7z5 + 28a-7z7 - 4a-7z9 - 7a-6 + 19a-6z2 - 8a-6z4 - 8a-6z6 + 6a-6z8 - a-6z10 + 4a-5z-1 - 18a-5z + 30a-5z3 - 23a-5z5 + 8a-5z7 - a-5z9

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 26           1
j = 24          1 
j = 22         21 
j = 20        11  
j = 18       32   
j = 16      11    
j = 14     33     
j = 12    11      
j = 10   13       
j = 8  21        
j = 6 13         
j = 4            
j = 21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 110]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 110]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 4, 15, 3], X[16, 8, 17, 7], X[18, 10, 19, 9], 
 
>   X[20, 12, 21, 11], X[22, 14, 5, 13], X[8, 18, 9, 17], X[10, 20, 11, 19], 
 
>   X[12, 22, 13, 21], X[2, 5, 3, 6], X[4, 16, 1, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -7, 4, -8, 5, -9, 6, -2, 11, -3, 7, -4, 
 
>    8, -5, 9, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
  3/2    5/2      7/2      9/2      11/2      13/2      15/2      17/2
-q    + q    - 3 q    + 2 q    - 4 q     + 4 q     - 4 q     + 4 q     - 
 
       19/2      21/2      23/2    25/2
>   3 q     + 3 q     - 2 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 6    8      10      12      14      16      18      20    22    24      26
q  + q  + 2 q   + 3 q   + 3 q   + 4 q   + 2 q   + 2 q   - q   - q   - 2 q   - 
 
       28    30    32    36
>   2 q   - q   - q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 110]][a, z]
Out[8]=   
                                             3       3       3      5       5
 3      7      4     8 z   22 z   14 z   11 z    31 z    16 z    6 z    23 z
---- - ---- + ---- + --- - ---- + ---- + ----- - ----- + ----- + ---- - ----- + 
 9      7      5      9      7      5      9       7       5       9      7
a  z   a  z   a  z   a      a      a      a       a       a       a      a
 
       5    7      7    7    9
    7 z    z    8 z    z    z
>   ---- + -- - ---- + -- - --
      5     9     7     5    7
     a     a     a     a    a
In[9]:=
Kauffman[Link[11, Alternating, 110]][a, z]
Out[9]=   
                                                             2       2
  -14   7    7     3      7      4     12 z   30 z   18 z   z     3 z
-a    - -- - -- + ---- + ---- + ---- - ---- - ---- - ---- - --- + ---- + 
         8    6    9      7      5       9      7      5     16    14
        a    a    a  z   a  z   a  z    a      a      a     a     a
 
        2       2      3      3      3       3       3       3      4      4
    23 z    19 z    2 z    4 z    4 z    25 z    65 z    30 z    3 z    6 z
>   ----- + ----- - ---- + ---- - ---- + ----- + ----- + ----- - ---- + ---- - 
      8       6      15     13     11      9       7       5      14     12
     a       a      a      a      a       a       a       a      a      a
 
        4       4      4      5      5       5       5       5      6       6
    10 z    27 z    8 z    3 z    9 z    31 z    66 z    23 z    3 z    12 z
>   ----- - ----- - ---- - ---- + ---- - ----- - ----- - ----- - ---- + ----- + 
      10      8       6     13     11      9       7       5      12      10
     a       a       a     a      a       a       a       a      a       a
 
       6      6      7       7       7      7      8      8      8      9
    7 z    8 z    3 z    17 z    28 z    8 z    3 z    3 z    6 z    3 z
>   ---- - ---- - ---- + ----- + ----- + ---- - ---- + ---- + ---- - ---- - 
      8      6     11      9       7       5     10      8      6      9
     a      a     a       a       a       a     a       a      a      a
 
       9    9    10    10
    4 z    z    z     z
>   ---- - -- - --- - ---
      7     5    8     6
     a     a    a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
               2    6
   6      8   q    q     8      10        10  2    12  2    12  3      14  3
3 q  + 2 q  + -- + -- + q  t + q   t + 3 q   t  + q   t  + q   t  + 3 q   t  + 
               2   t
              t
 
       14  4    16  4    16  5      18  5      18  6    20  6    20  7
>   3 q   t  + q   t  + q   t  + 3 q   t  + 2 q   t  + q   t  + q   t  + 
 
       22  7    22  8    24  8    26  9
>   2 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a110
L11a109
L11a109
L11a111
L11a111