© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a105
L11a105
L11a107
L11a107
L11a106
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a106

Visit L11a106's page at Knotilus!

Acknowledgement

L11a106 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,3,15,4 X16,8,17,7 X22,18,5,17 X18,9,19,10 X8,21,9,22 X20,11,21,12 X10,19,11,20 X12,16,13,15 X2536 X4,13,1,14

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -6, 5, -8, 7, -9, 11, -2, 9, -3, 4, -5, 8, -7, 6, -4}}

Jones Polynomial: - q-19/2 + 3q-17/2 - 7q-15/2 + 12q-13/2 - 16q-11/2 + 18q-9/2 - 19q-7/2 + 16q-5/2 - 12q-3/2 + 7q-1/2 - 4q1/2 + q3/2

A2 (sl(3)) Invariant: q-30 + q-28 - q-26 + 2q-24 - 3q-20 + 2q-18 - 3q-16 + 2q-14 + 2q-12 + 5q-8 - 3q-6 + 3q-4 + q-2 - 1 + 2q2 - q4

HOMFLY-PT Polynomial: 2az3 + az5 - 2a3z-1 - 6a3z - 7a3z3 - 4a3z5 - a3z7 + 4a5z-1 + 9a5z + 9a5z3 + 3a5z5 - 3a7z-1 - 6a7z - 3a7z3 + a9z-1 + a9z

Kauffman Polynomial: 2z4 - z6 - 7az3 + 11az5 - 4az7 + 2a2z2 - 12a2z4 + 16a2z6 - 6a2z8 - 2a3z-1 + 8a3z - 17a3z3 + 14a3z5 + 2a3z7 - 4a3z9 + 2a4 + 2a4z2 - 22a4z4 + 30a4z6 - 11a4z8 - a4z10 - 4a5z-1 + 17a5z - 26a5z3 + 17a5z5 + 4a5z7 - 7a5z9 + 3a6 - 5a6z2 - 6a6z4 + 18a6z6 - 10a6z8 - a6z10 - 3a7z-1 + 12a7z - 22a7z3 + 22a7z5 - 7a7z7 - 3a7z9 + 3a8 - 8a8z2 + 7a8z4 + 2a8z6 - 5a8z8 - a9z-1 + 2a9z - 4a9z3 + 7a9z5 - 5a9z7 + a10 - 3a10z2 + 5a10z4 - 3a10z6 - a11z + 2a11z3 - a11z5

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 4           1
j = 2          3 
j = 0         41 
j = -2        83  
j = -4       95   
j = -6      107    
j = -8     89     
j = -10    810      
j = -12   59       
j = -14  27        
j = -16 15         
j = -18 2          
j = -201           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 106]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 106]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[16, 8, 17, 7], X[22, 18, 5, 17], 
 
>   X[18, 9, 19, 10], X[8, 21, 9, 22], X[20, 11, 21, 12], X[10, 19, 11, 20], 
 
>   X[12, 16, 13, 15], X[2, 5, 3, 6], X[4, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -6, 5, -8, 7, -9, 11, -2, 9, -3, 4, -5, 
 
>    8, -7, 6, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(19/2)     3       7      12      16      18     19     16     12
-q        + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + 
             17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
            q       q       q       q       q      q      q      q
 
       7                   3/2
>   ------- - 4 Sqrt[q] + q
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -30    -28    -26    2     3     2     3     2     2    5    3    3
-1 + q    + q    - q    + --- - --- + --- - --- + --- + --- + -- - -- + -- + 
                           24    20    18    16    14    12    8    6    4
                          q     q     q     q     q     q     q    q    q
 
     -2      2    4
>   q   + 2 q  - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 106]][a, z]
Out[8]=   
    3      5      7    9
-2 a    4 a    3 a    a       3        5        7      9          3      3  3
----- + ---- - ---- + -- - 6 a  z + 9 a  z - 6 a  z + a  z + 2 a z  - 7 a  z  + 
  z      z      z     z
 
       5  3      7  3      5      3  5      5  5    3  7
>   9 a  z  - 3 a  z  + a z  - 4 a  z  + 3 a  z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 106]][a, z]
Out[9]=   
                              3      5      7    9
   4      6      8    10   2 a    4 a    3 a    a       3         5
2 a  + 3 a  + 3 a  + a   - ---- - ---- - ---- - -- + 8 a  z + 17 a  z + 
                            z      z      z     z
 
        7        9      11        2  2      4  2      6  2      8  2
>   12 a  z + 2 a  z - a   z + 2 a  z  + 2 a  z  - 5 a  z  - 8 a  z  - 
 
       10  2        3       3  3       5  3       7  3      9  3      11  3
>   3 a   z  - 7 a z  - 17 a  z  - 26 a  z  - 22 a  z  - 4 a  z  + 2 a   z  + 
 
       4       2  4       4  4      6  4      8  4      10  4         5
>   2 z  - 12 a  z  - 22 a  z  - 6 a  z  + 7 a  z  + 5 a   z  + 11 a z  + 
 
        3  5       5  5       7  5      9  5    11  5    6       2  6
>   14 a  z  + 17 a  z  + 22 a  z  + 7 a  z  - a   z  - z  + 16 a  z  + 
 
        4  6       6  6      8  6      10  6        7      3  7      5  7
>   30 a  z  + 18 a  z  + 2 a  z  - 3 a   z  - 4 a z  + 2 a  z  + 4 a  z  - 
 
       7  7      9  7      2  8       4  8       6  8      8  8      3  9
>   7 a  z  - 5 a  z  - 6 a  z  - 11 a  z  - 10 a  z  - 5 a  z  - 4 a  z  - 
 
       5  9      7  9    4  10    6  10
>   7 a  z  - 3 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
5    8      1        2        1        5        2        7        5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    20  8    18  7    16  7    16  6    14  6    14  5    12  5
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      9        8        10       8       9      10      7      9
>   ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + 4 t + 
     12  4    10  4    10  3    8  3    8  2    6  2    6      4
    q   t    q   t    q   t    q  t    q  t    q  t    q  t   q  t
 
    3 t    2      2  2    4  3
>   --- + t  + 3 q  t  + q  t
     2
    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a106
L11a105
L11a105
L11a107
L11a107