© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n93
L10n93
L10n95
L10n95
L10n94
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L10n94

Visit L10n94's page at Knotilus!

Acknowledgement

L10n94 as Morse Link
DrawMorseLink

PD Presentation: X8192 X18,10,19,9 X6,18,1,17 X7,17,8,16 X3,10,4,11 X14,6,15,5 X4,14,5,13 X11,13,12,20 X15,7,16,12 X19,3,20,2

Gauss Code: {{1, 10, -5, -7, 6, -3}, {-4, -1, 2, 5, -8, 9}, {7, -6, -9, 4, 3, -2, -10, 8}}

Jones Polynomial: q2 + q3 + q4 + q9

A2 (sl(3)) Invariant: q6 + 2q8 + 4q10 + 4q12 + 4q14 + 2q16 + q18 + q20 + 2q22 + 3q24 + 2q26 + q28

HOMFLY-PT Polynomial: a-8z-2 + 3a-8 + a-8z2 - 2a-6z-2 - 9a-6 - 6a-6z2 - a-6z4 + a-4z-2 + 6a-4 + 5a-4z2 + a-4z4

Kauffman Polynomial: - 2a-10 + 9a-10z2 - 6a-10z4 + a-10z6 - a-8z-2 + 3a-8 - a-8z2 + 2a-7z-1 - 9a-7z + 6a-7z3 - a-7z5 - 2a-6z-2 + 11a-6 - 15a-6z2 + 7a-6z4 - a-6z6 + 2a-5z-1 - 9a-5z + 6a-5z3 - a-5z5 - a-4z-2 + 7a-4 - 5a-4z2 + a-4z4

Khovanov Homology:
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 19        1
j = 17        1
j = 15     11  
j = 13         
j = 11   121   
j = 9  1      
j = 7  31     
j = 51 1      
j = 31        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 94]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 94]]
Out[4]=   
PD[X[8, 1, 9, 2], X[18, 10, 19, 9], X[6, 18, 1, 17], X[7, 17, 8, 16], 
 
>   X[3, 10, 4, 11], X[14, 6, 15, 5], X[4, 14, 5, 13], X[11, 13, 12, 20], 
 
>   X[15, 7, 16, 12], X[19, 3, 20, 2]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 10, -5, -7, 6, -3}, {-4, -1, 2, 5, -8, 9}, 
 
>   {7, -6, -9, 4, 3, -2, -10, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
 2    3    4    9
q  + q  + q  + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 6      8      10      12      14      16    18    20      22      24      26
q  + 2 q  + 4 q   + 4 q   + 4 q   + 2 q   + q   + q   + 2 q   + 3 q   + 2 q   + 
 
     28
>   q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 94]][a, z]
Out[8]=   
                                        2      2      2    4    4
3    9    6      1       2       1     z    6 z    5 z    z    z
-- - -- + -- + ----- - ----- + ----- + -- - ---- + ---- - -- + --
 8    6    4    8  2    6  2    4  2    8     6      4     6    4
a    a    a    a  z    a  z    a  z    a     a      a     a    a
In[9]:=
Kauffman[Link[10, NonAlternating, 94]][a, z]
Out[9]=   
                                                                          2
-2    3    11   7      1       2       1      2      2     9 z   9 z   9 z
--- + -- + -- + -- - ----- - ----- - ----- + ---- + ---- - --- - --- + ---- - 
 10    8    6    4    8  2    6  2    4  2    7      5      7     5     10
a     a    a    a    a  z    a  z    a  z    a  z   a  z   a     a     a
 
     2       2      2      3      3      4      4    4    5    5    6     6
    z    15 z    5 z    6 z    6 z    6 z    7 z    z    z    z    z     z
>   -- - ----- - ---- + ---- + ---- - ---- + ---- + -- - -- - -- + --- - --
     8     6       4      7      5     10      6     4    7    5    10    6
    a     a       a      a      a     a       a     a    a    a    a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
 3    5    5  2      7  2    9  2    7  3    11  3      11  4    11  5
q  + q  + q  t  + 3 q  t  + q  t  + q  t  + q   t  + 2 q   t  + q   t  + 
 
     15  5    15  6    17  8    19  8
>   q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n94
L10n93
L10n93
L10n95
L10n95