PD Presentation: |
X6172 X10,3,11,4 X7,14,8,15 X20,15,17,16 X18,11,19,12 X12,17,13,18 X16,19,5,20 X13,8,14,9 X2536 X4,9,1,10 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[10, NonAlternating, 89]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, NonAlternating, 89]] |
Out[4]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[7, 14, 8, 15], X[20, 15, 17, 16],
> X[18, 11, 19, 12], X[12, 17, 13, 18], X[16, 19, 5, 20], X[13, 8, 14, 9],
> X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 2, -10}, {6, -5, 7, -4},
> {9, -1, -3, 8, 10, -2, 5, -6, -8, 3, 4, -7}] |
In[6]:= | Jones[L][q] |
Out[6]= | 2 4 7 8 9 7 7 3 -2
--- - -- + -- - -- + -- - -- + -- - -- + q
10 9 8 7 6 5 4 3
q q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | 2 3 3 2 2 5 2 5 -14 -12 2 2 -6
--- + --- + --- + --- + --- + --- + --- + --- + q + q + --- - -- + q
32 30 26 24 22 20 18 16 10 8
q q q q q q q q q q |
In[8]:= | HOMFLYPT[Link[10, NonAlternating, 89]][a, z] |
Out[8]= | 6 8 10
6 8 10 a 2 a a 4 2 6 2 8 2 4 4
6 a - 8 a + 2 a + -- - ---- + --- + a z + 8 a z - 5 a z + a z +
2 2 2
z z z
6 4
> 3 a z |
In[9]:= | Kauffman[Link[10, NonAlternating, 89]][a, z] |
Out[9]= | 6 8 10 7 9
6 8 10 12 a 2 a a 2 a 2 a 7
-6 a - 9 a - 2 a + 2 a + -- + ---- + --- - ---- - ---- + 8 a z +
2 2 2 z z
z z z
9 4 2 6 2 8 2 12 2 5 3 7 3
> 8 a z - a z + 10 a z + 16 a z - 5 a z - 2 a z - 8 a z -
9 3 11 3 4 4 6 4 8 4 10 4 12 4
> 8 a z - 2 a z + a z - 11 a z - 18 a z - 3 a z + 3 a z +
5 5 7 5 9 5 11 5 6 6 8 6 10 6
> 3 a z - a z - 3 a z + a z + 6 a z + 8 a z + 2 a z +
7 7 9 7 11 7 8 8 10 8
> 4 a z + 5 a z + a z + a z + a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -5 -3 2 1 3 1 4 3 4
q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
21 8 19 8 19 7 17 7 17 6 15 6 15 5
q t q t q t q t q t q t q t
4 5 6 4 3 3 4 3
> ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----
13 5 13 4 11 4 11 3 9 3 9 2 7 2 5
q t q t q t q t q t q t q t q t |