PD Presentation: |
X6172 X10,3,11,4 X11,18,12,19 X7,14,8,15 X13,8,14,9 X15,13,16,20 X19,17,20,16 X17,12,18,5 X2536 X4,9,1,10 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[10, NonAlternating, 80]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, NonAlternating, 80]] |
Out[4]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[11, 18, 12, 19], X[7, 14, 8, 15],
> X[13, 8, 14, 9], X[15, 13, 16, 20], X[19, 17, 20, 16], X[17, 12, 18, 5],
> X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 2, -10}, {9, -1, -4, 5, 10, -2, -3, 8},
> {-5, 4, -6, 7, -8, 3, -7, 6}] |
In[6]:= | Jones[L][q] |
Out[6]= | -9 -8 4 4 6 5 5 4 2
q - q + -- - -- + -- - -- + -- - -- + -
7 6 5 4 3 2 q
q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -30 3 3 4 6 3 3 2 -12 -10 -8 -4 2
q + --- + --- + --- + --- + --- + --- + --- + q - q + q - q + --
28 26 24 22 20 18 16 2
q q q q q q q q |
In[8]:= | HOMFLYPT[Link[10, NonAlternating, 80]][a, z] |
Out[8]= | 6 8 10
2 4 6 8 a 2 a a 2 2 4 2 6 2 4 4
a - a + 3 a - 3 a + -- - ---- + --- + 2 a z - a z + 3 a z - a z
2 2 2
z z z |
In[9]:= | Kauffman[Link[10, NonAlternating, 80]][a, z] |
Out[9]= | 6 8 10 7 9
2 6 8 10 a 2 a a 2 a 2 a 3 5
-a - 2 a - 7 a - 5 a + -- + ---- + --- - ---- - ---- - 2 a z - 6 a z +
2 2 2 z z
z z z
7 9 2 2 4 2 6 2 8 2 10 2
> 2 a z + 6 a z + 3 a z + 4 a z + 3 a z + 10 a z + 8 a z +
3 3 5 3 7 3 9 3 4 4 6 4 8 4
> 3 a z + 11 a z + 5 a z - 3 a z - 5 a z - 6 a z - 6 a z -
10 4 3 5 5 5 7 5 9 5 4 6 6 6 8 6
> 5 a z + a z - 8 a z - 11 a z - 2 a z + 3 a z + a z - a z +
10 6 5 7 7 7 9 7 6 8 8 8
> a z + 3 a z + 4 a z + a z + a z + a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -3 2 1 1 1 3 1 1 3
q + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
q 19 8 17 8 17 7 15 6 13 6 13 5 11 5
q t q t q t q t q t q t q t
5 3 2 3 3 2 1 3
> ------ + ----- + ----- + ----- + ----- + ----- + ---- + ----
11 4 9 4 9 3 7 3 7 2 5 2 5 3
q t q t q t q t q t q t q t q t |