© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n7
L10n7
L10n9
L10n9
L10n8
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n8

Visit L10n8's page at Knotilus!

Acknowledgement

L10n8 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X17,1,18,4 X9,14,10,15 X3849 X5,11,6,10 X11,5,12,20 X13,19,14,18 X19,13,20,12 X2,16,3,15

Gauss Code: {{1, -10, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 9, -8, 4, 10, -2, -3, 8, -9, 7}}

Jones Polynomial: - q-7/2 + q-5/2 - 2q-3/2 + 2q-1/2 - 3q1/2 + 3q3/2 - 2q5/2 + q7/2 - q9/2

A2 (sl(3)) Invariant: q-12 + q-10 + q-8 + 2q-6 + q-4 + q-2 + 1 - q2 - q4 - 2q6 + q10 + q12 + 2q14 + q16

HOMFLY-PT Polynomial: - a-5z-1 + 2a-3z-1 + 2a-3z - a-1z-1 - a-1z - a-1z3 - az-1 - 2az - az3 + a3z-1 + a3z

Kauffman Polynomial: - a-5z-1 + 3a-5z - a-5z3 - a-4 + 2a-4z2 - a-4z4 - 2a-3z-1 + 11a-3z - 14a-3z3 + 6a-3z5 - a-3z7 - 3a-2 + 9a-2z2 - 13a-2z4 + 6a-2z6 - a-2z8 - a-1z-1 + 8a-1z - 17a-1z3 + 10a-1z5 - 2a-1z7 - 2 + 7z2 - 9z4 + 5z6 - z8 + az-1 - 3az + 3az5 - az7 - a2 + 3a2z4 - a2z6 + a3z-1 - 3a3z + 4a3z3 - a3z5

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 10        1
j = 8         
j = 6      21 
j = 4     1   
j = 2    22   
j = 0   23    
j = -2   11    
j = -4 12      
j = -6         
j = -81        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 8]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 8]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[17, 1, 18, 4], X[9, 14, 10, 15], 
 
>   X[3, 8, 4, 9], X[5, 11, 6, 10], X[11, 5, 12, 20], X[13, 19, 14, 18], 
 
>   X[19, 13, 20, 12], X[2, 16, 3, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 9, -8, 4, 10, -2, -3, 8, 
 
>    -9, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(7/2)    -(5/2)    2        2                     3/2      5/2    7/2    9/2
-q       + q       - ---- + ------- - 3 Sqrt[q] + 3 q    - 2 q    + q    - q
                      3/2   Sqrt[q]
                     q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12    -10    -8   2     -4    -2    2    4      6    10    12      14
1 + q    + q    + q   + -- + q   + q   - q  - q  - 2 q  + q   + q   + 2 q   + 
                         6
                        q
 
     16
>   q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 8]][a, z]
Out[8]=   
                            3                             3
   1       2      1    a   a    2 z   z            3     z       3
-(----) + ---- - --- - - + -- + --- - - - 2 a z + a  z - -- - a z
   5       3     a z   z   z     3    a                  a
  a  z    a  z                  a
In[9]:=
Kauffman[Link[10, NonAlternating, 8]][a, z]
Out[9]=   
                                              3
      -4   3     2    1      2      1    a   a    3 z   11 z   8 z
-2 - a   - -- - a  - ---- - ---- - --- + - + -- + --- + ---- + --- - 3 a z - 
            2         5      3     a z   z   z     5      3     a
           a         a  z   a  z                  a      a
 
                       2      2    3       3       3                     4
       3        2   2 z    9 z    z    14 z    17 z       3  3      4   z
>   3 a  z + 7 z  + ---- + ---- - -- - ----- - ----- + 4 a  z  - 9 z  - -- - 
                      4      2     5     3       a                       4
                     a      a     a     a                               a
 
        4                5       5                              6
    13 z       2  4   6 z    10 z         5    3  5      6   6 z     2  6
>   ----- + 3 a  z  + ---- + ----- + 3 a z  - a  z  + 5 z  + ---- - a  z  - 
      2                 3      a                               2
     a                 a                                      a
 
     7      7                8
    z    2 z       7    8   z
>   -- - ---- - a z  - z  - --
     3    a                  2
    a                       a
In[10]:=
Kh[L][q, t]
Out[10]=   
     -2      2     1       1       2     2    1        2      4        6  2
3 + q   + 2 q  + ----- + ----- + ----- + - + ---- + 2 q  t + q  t + 2 q  t  + 
                  8  4    4  3    4  2   t    2
                 q  t    q  t    q  t        q  t
 
     6  3    10  4
>   q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n8
L10n7
L10n7
L10n9
L10n9