PD Presentation: |
X6172 X5,14,6,15 X3849 X2,16,3,15 X16,7,17,8 X9,18,10,19 X17,1,18,4 X19,12,20,5 X11,20,12,13 X13,10,14,11 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[10, NonAlternating, 75]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, NonAlternating, 75]] |
Out[4]= | PD[X[6, 1, 7, 2], X[5, 14, 6, 15], X[3, 8, 4, 9], X[2, 16, 3, 15],
> X[16, 7, 17, 8], X[9, 18, 10, 19], X[17, 1, 18, 4], X[19, 12, 20, 5],
> X[11, 20, 12, 13], X[13, 10, 14, 11]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -4, -3, 7}, {-2, -1, 5, 3, -6, 10, -9, 8},
> {-10, 2, 4, -5, -7, 6, -8, 9}] |
In[6]:= | Jones[L][q] |
Out[6]= | -9 -8 3 4 5 4 5 3 2
q - q + -- - -- + -- - -- + -- - -- + -
7 6 5 4 3 2 q
q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 -26 2 4 2 3 3 2 3 -10 2 -6 2
q + q + --- + --- + --- + --- + --- + --- + --- + q + -- + q + --
24 22 20 18 16 14 12 8 2
q q q q q q q q q |
In[8]:= | HOMFLYPT[Link[10, NonAlternating, 75]][a, z] |
Out[8]= | 4 6 8
2 4 6 8 a 2 a a 2 2 4 2 6 2 8 2
2 a + a - 5 a + 2 a + -- - ---- + -- + 2 a z - a z - 3 a z + a z -
2 2 2
z z z
4 4 6 4
> a z - a z |
In[9]:= | Kauffman[Link[10, NonAlternating, 75]][a, z] |
Out[9]= | 4 6 8 5 7
2 4 6 8 10 a 2 a a 2 a 2 a 3
-2 a + 3 a + 9 a + 3 a - 2 a - -- - ---- - -- + ---- + ---- + a z -
2 2 2 z z
z z z
5 7 9 2 2 6 2 8 2 10 2 3 3
> 8 a z - 8 a z + a z + 3 a z - 14 a z - 4 a z + 7 a z + a z +
5 3 7 3 9 3 4 4 6 4 8 4 10 4
> 9 a z + 9 a z + a z - 2 a z + 6 a z + 3 a z - 5 a z +
3 5 5 5 7 5 9 5 4 6 6 6 8 6
> a z - 5 a z - 9 a z - 3 a z + 2 a z - 2 a z - 3 a z +
10 6 5 7 7 7 9 7 6 8 8 8
> a z + 2 a z + 3 a z + a z + a z + a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 2 1 1 1 2 1 2 2
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
3 q 19 8 17 8 17 7 15 6 13 6 13 5 11 5
q q t q t q t q t q t q t q t
3 3 2 2 3 2 3
> ------ + ----- + ----- + ----- + ----- + ----- + ----
11 4 9 4 9 3 7 3 7 2 5 2 3
q t q t q t q t q t q t q t |