PD Presentation: |
X6172 X10,3,11,4 X11,16,12,17 X13,19,14,18 X17,20,18,9 X19,13,20,12 X8,16,5,15 X14,8,15,7 X2536 X4,9,1,10 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[10, NonAlternating, 67]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, NonAlternating, 67]] |
Out[4]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[11, 16, 12, 17], X[13, 19, 14, 18],
> X[17, 20, 18, 9], X[19, 13, 20, 12], X[8, 16, 5, 15], X[14, 8, 15, 7],
> X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 2, -10}, {9, -1, 8, -7},
> {10, -2, -3, 6, -4, -8, 7, 3, -5, 4, -6, 5}] |
In[6]:= | Jones[L][q] |
Out[6]= | -6 2 5 5 6 6 2
6 + q - -- + -- - -- + -- - - - 3 q + 2 q
5 4 3 2 q
q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -20 2 -16 4 3 -10 2 -6 -4 -2 2 4
2 + q + --- + q + --- + --- + q + -- - q + q + q + 4 q + q +
18 14 12 8
q q q q
6 8
> 3 q + 2 q |
In[8]:= | HOMFLYPT[Link[10, NonAlternating, 67]][a, z] |
Out[8]= | 2 4 6
2 2 4 6 3 1 4 a 3 a a 2 2 2
-6 + -- + 8 a - 5 a + a - -- + ----- + ---- - ---- + -- - 4 z + 6 a z -
2 2 2 2 2 2 2
a z a z z z z
4 2 2 4
> 3 a z + 2 a z |
In[9]:= | Kauffman[Link[10, NonAlternating, 67]][a, z] |
Out[9]= | 2 4 6
4 2 4 6 3 1 4 a 3 a a 1 a
-14 - -- - 21 a - 14 a - 4 a + -- + ----- + ---- + ---- + -- - --- - - -
2 2 2 2 2 2 2 a z z
a z a z z z z
3 5 2
a a z 3 5 2 3 z 2 2 4 2
> -- - -- + - + a z + a z + a z + 23 z + ---- + 39 a z + 25 a z +
z z a 2
a
3
6 2 z 3 3 3 5 3 4 2 4 4 4
> 6 a z + -- + 9 a z + 11 a z + 3 a z - 13 z - 30 a z - 21 a z -
a
5
6 4 z 5 3 5 5 5 6 2 6 4 6
> 4 a z + -- - 11 a z - 18 a z - 6 a z + 4 z + 6 a z + 3 a z +
a
6 6 7 3 7 5 7 2 8 4 8
> a z + 4 a z + 6 a z + 2 a z + a z + a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -3 4 1 1 1 4 2 2 3
q + - + 5 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3
q t q t q t q t q t q t q t
4 2 3 4 3 5 2
> ----- + ----- + ---- + --- + 2 q t + q t + 2 q t
5 2 3 2 3 q t
q t q t q t |