© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n50
L10n50
L10n52
L10n52
L10n51
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n51

Visit L10n51's page at Knotilus!

Acknowledgement

L10n51 as Morse Link
DrawMorseLink

PD Presentation: X8192 X2,9,3,10 X10,3,11,4 X11,19,12,18 X5,12,6,13 X17,4,18,5 X14,7,15,8 X16,14,17,13 X20,15,7,16 X6,19,1,20

Gauss Code: {{1, -2, 3, 6, -5, -10}, {7, -1, 2, -3, -4, 5, 8, -7, 9, -8, -6, 4, 10, -9}}

Jones Polynomial: - q-19/2 + 2q-17/2 - 4q-15/2 + 5q-13/2 - 6q-11/2 + 6q-9/2 - 5q-7/2 + 3q-5/2 - 2q-3/2

A2 (sl(3)) Invariant: q-30 + q-28 + 2q-24 + q-18 - q-16 + q-14 - q-12 + q-10 + 2q-8 + 2q-4

HOMFLY-PT Polynomial: - a3z-1 - 4a3z - 2a3z3 + 2a5z-1 + 4a5z + 3a5z3 + a5z5 - 2a7z-1 - 4a7z - 2a7z3 + a9z-1 + a9z

Kauffman Polynomial: - a3z-1 + 5a3z - 3a3z3 - a4z6 - 2a5z-1 + 9a5z - 13a5z3 + 6a5z5 - 2a5z7 - a6 + 2a6z2 - 3a6z4 + a6z6 - a6z8 - 2a7z-1 + 9a7z - 15a7z3 + 11a7z5 - 4a7z7 + 2a8z4 - a8z8 - a9z-1 + 3a9z - 2a9z3 + 4a9z5 - 2a9z7 - 2a10z2 + 5a10z4 - 2a10z6 - 2a11z + 3a11z3 - a11z5

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2        2
j = -4       21
j = -6      31 
j = -8     32  
j = -10    33   
j = -12   23    
j = -14  23     
j = -16 13      
j = -18 1       
j = -201        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 51]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 51]]
Out[4]=   
PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[11, 19, 12, 18], 
 
>   X[5, 12, 6, 13], X[17, 4, 18, 5], X[14, 7, 15, 8], X[16, 14, 17, 13], 
 
>   X[20, 15, 7, 16], X[6, 19, 1, 20]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, 6, -5, -10}, 
 
>   {7, -1, 2, -3, -4, 5, 8, -7, 9, -8, -6, 4, 10, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(19/2)     2       4       5       6      6      5      3      2
-q        + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ----
             17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
            q       q       q       q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -30    -28    2     -18    -16    -14    -12    -10   2    2
q    + q    + --- + q    - q    + q    - q    + q    + -- + --
               24                                       8    4
              q                                        q    q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 51]][a, z]
Out[8]=   
   3       5      7    9
  a     2 a    2 a    a       3        5        7      9        3  3
-(--) + ---- - ---- + -- - 4 a  z + 4 a  z - 4 a  z + a  z - 2 a  z  + 
  z      z      z     z
 
       5  3      7  3    5  5
>   3 a  z  - 2 a  z  + a  z
In[9]:=
Kauffman[Link[10, NonAlternating, 51]][a, z]
Out[9]=   
       3      5      7    9
  6   a    2 a    2 a    a       3        5        7        9        11
-a  - -- - ---- - ---- - -- + 5 a  z + 9 a  z + 9 a  z + 3 a  z - 2 a   z + 
      z     z      z     z
 
       6  2      10  2      3  3       5  3       7  3      9  3      11  3
>   2 a  z  - 2 a   z  - 3 a  z  - 13 a  z  - 15 a  z  - 2 a  z  + 3 a   z  - 
 
       6  4      8  4      10  4      5  5       7  5      9  5    11  5
>   3 a  z  + 2 a  z  + 5 a   z  + 6 a  z  + 11 a  z  + 4 a  z  - a   z  - 
 
     4  6    6  6      10  6      5  7      7  7      9  7    6  8    8  8
>   a  z  + a  z  - 2 a   z  - 2 a  z  - 4 a  z  - 2 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4   2      1        1        1        3        2        3        2
q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
       2    20  8    18  7    16  7    16  6    14  6    14  5    12  5
      q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      3        3        3        3       2       3      1      2
>   ------ + ------ + ------ + ----- + ----- + ----- + ---- + ----
     12  4    10  4    10  3    8  3    8  2    6  2    6      4
    q   t    q   t    q   t    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n51
L10n50
L10n50
L10n52
L10n52