© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n39
L10n39
L10n41
L10n41
L10n40
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n40

Visit L10n40's page at Knotilus!

Acknowledgement

L10n40 as Morse Link
DrawMorseLink

PD Presentation: X8192 X10,4,11,3 X20,10,7,9 X2738 X15,5,16,4 X5,13,6,12 X11,16,12,17 X6,18,1,17 X14,19,15,20 X18,13,19,14

Gauss Code: {{1, -4, 2, 5, -6, -8}, {4, -1, 3, -2, -7, 6, 10, -9, -5, 7, 8, -10, 9, -3}}

Jones Polynomial: q-7/2 - 2q-5/2 + 3q-3/2 - 4q-1/2 + 3q1/2 - 4q3/2 + 2q5/2 - 2q7/2 + q9/2

A2 (sl(3)) Invariant: - q-12 - q-10 - q-6 + q-4 + q-2 + 2 + 3q2 + 2q4 + 3q6 + q8 - q14

HOMFLY-PT Polynomial: 2a-3z + a-3z3 - 2a-1z-1 - 5a-1z - 4a-1z3 - a-1z5 + 3az-1 + 5az + 2az3 - a3z-1 - a3z

Kauffman Polynomial: - 3a-4z2 + 4a-4z4 - a-4z6 + 5a-3z - 11a-3z3 + 9a-3z5 - 2a-3z7 - 5a-2z2 + 4a-2z4 + 2a-2z6 - a-2z8 - 2a-1z-1 + 14a-1z - 25a-1z3 + 18a-1z5 - 4a-1z7 + 3 - 7z2 + 3z4 + 2z6 - z8 - 3az-1 + 11az - 16az3 + 9az5 - 2az7 + 3a2 - 6a2z2 + 3a2z4 - a2z6 - a3z-1 + 2a3z - 2a3z3 + a4 - a4z2

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 10        1
j = 8       1 
j = 6      11 
j = 4     31  
j = 2    12   
j = 0   32    
j = -2  12     
j = -4 12      
j = -6 1       
j = -81        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 40]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 40]]
Out[4]=   
PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[20, 10, 7, 9], X[2, 7, 3, 8], 
 
>   X[15, 5, 16, 4], X[5, 13, 6, 12], X[11, 16, 12, 17], X[6, 18, 1, 17], 
 
>   X[14, 19, 15, 20], X[18, 13, 19, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 2, 5, -6, -8}, 
 
>   {4, -1, 3, -2, -7, 6, 10, -9, -5, 7, 8, -10, 9, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(7/2)    2      3        4                     3/2      5/2      7/2    9/2
q       - ---- + ---- - ------- + 3 Sqrt[q] - 4 q    + 2 q    - 2 q    + q
           5/2    3/2   Sqrt[q]
          q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12    -10    -6    -4    -2      2      4      6    8    14
2 - q    - q    - q   + q   + q   + 3 q  + 2 q  + 3 q  + q  - q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 40]][a, z]
Out[8]=   
             3                               3      3             5
-2    3 a   a    2 z   5 z            3     z    4 z         3   z
--- + --- - -- + --- - --- + 5 a z - a  z + -- - ---- + 2 a z  - --
a z    z    z     3     a                    3    a              a
                 a                          a
In[9]:=
Kauffman[Link[10, NonAlternating, 40]][a, z]
Out[9]=   
                             3                                            2
       2    4    2    3 a   a    5 z   14 z               3        2   3 z
3 + 3 a  + a  - --- - --- - -- + --- + ---- + 11 a z + 2 a  z - 7 z  - ---- - 
                a z    z    z     3     a                                4
                                 a                                      a
 
       2                         3       3                                 4
    5 z       2  2    4  2   11 z    25 z          3      3  3      4   4 z
>   ---- - 6 a  z  - a  z  - ----- - ----- - 16 a z  - 2 a  z  + 3 z  + ---- + 
      2                        3       a                                  4
     a                        a                                          a
 
       4                5       5                    6      6              7
    4 z       2  4   9 z    18 z         5      6   z    2 z     2  6   2 z
>   ---- + 3 a  z  + ---- + ----- + 9 a z  + 2 z  - -- + ---- - a  z  - ---- - 
      2                3      a                      4     2              3
     a                a                             a     a              a
 
       7                  8
    4 z         7    8   z
>   ---- - 2 a z  - z  - --
     a                    2
                         a
In[10]:=
Kh[L][q, t]
Out[10]=   
    2      1       1       1      2      1            2        2  2      4  2
3 + -- + ----- + ----- + ----- + ---- + ---- + 2 t + q  t + 2 q  t  + 3 q  t  + 
     2    8  3    6  2    4  2    4      2
    q    q  t    q  t    q  t    q  t   q  t
 
     4  3    6  3    6  4    8  4    10  5
>   q  t  + q  t  + q  t  + q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n40
L10n39
L10n39
L10n41
L10n41