© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n31
L10n31
L10n33
L10n33
L10n32
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n32

Visit L10n32's page at Knotilus!

Acknowledgement

L10n32 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X7,16,8,17 X17,20,18,5 X11,19,12,18 X19,11,20,10 X9,14,10,15 X15,8,16,9 X2536 X4,14,1,13

Gauss Code: {{1, -9, 2, -10}, {9, -1, -3, 8, -7, 6, -5, -2, 10, 7, -8, 3, -4, 5, -6, 4}}

Jones Polynomial: - q-11/2 + q-9/2 - q-7/2 + q-5/2 - q-1/2 - q3/2 + q5/2 - q7/2

A2 (sl(3)) Invariant: q-18 + q-16 + q-14 + q-12 - 2q-6 - q-4 + 1 + 2q2 + q4 + q6 + q8 + q10 + q12

HOMFLY-PT Polynomial: - a-3z-1 - a-3z + a-1z-1 + 3a-1z + a-1z3 + az-1 - 2a3z-1 - 3a3z - a3z3 + a5z-1 + a5z

Kauffman Polynomial: a-3z-1 - 3a-3z + 4a-3z3 - a-3z5 - a-2 - 2a-2z2 + 4a-2z4 - a-2z6 + a-1z-1 - 5a-1z + 5a-1z3 - a-1z5 - 2 + 3z2 - az-1 + 6az - 12az3 + 7az5 - az7 - 3a2 + 11a2z2 - 14a2z4 + 7a2z6 - a2z8 - 2a3z-1 + 13a3z - 23a3z3 + 13a3z5 - 2a3z7 - a4 + 6a4z2 - 10a4z4 + 6a4z6 - a4z8 - a5z-1 + 5a5z - 10a5z3 + 6a5z5 - a5z7

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8          1
j = 6           
j = 4        11 
j = 2      21   
j = 0      21   
j = -2    122    
j = -4   1       
j = -6   11      
j = -8 11        
j = -10           
j = -121          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 32]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 32]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[7, 16, 8, 17], X[17, 20, 18, 5], 
 
>   X[11, 19, 12, 18], X[19, 11, 20, 10], X[9, 14, 10, 15], X[15, 8, 16, 9], 
 
>   X[2, 5, 3, 6], X[4, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10}, {9, -1, -3, 8, -7, 6, -5, -2, 10, 7, -8, 3, -4, 5, 
 
>    -6, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    -(9/2)    -(7/2)    -(5/2)      1       3/2    5/2    7/2
-q        + q       - q       + q       - ------- - q    + q    - q
                                          Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -18    -16    -14    -12   2     -4      2    4    6    8    10    12
1 + q    + q    + q    + q    - -- - q   + 2 q  + q  + q  + q  + q   + q
                                 6
                                q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 32]][a, z]
Out[8]=   
                       3    5                               3
   1       1    a   2 a    a    z    3 z      3      5     z     3  3
-(----) + --- + - - ---- + -- - -- + --- - 3 a  z + a  z + -- - a  z
   3      a z   z    z     z     3    a                    a
  a  z                          a
In[9]:=
Kauffman[Link[10, NonAlternating, 32]][a, z]
Out[9]=   
                                           3    5
      -2      2    4    1      1    a   2 a    a    3 z   5 z
-2 - a   - 3 a  - a  + ---- + --- - - - ---- - -- - --- - --- + 6 a z + 
                        3     a z   z    z     z     3     a
                       a  z                         a
 
                                 2                           3      3
        3        5        2   2 z        2  2      4  2   4 z    5 z
>   13 a  z + 5 a  z + 3 z  - ---- + 11 a  z  + 6 a  z  + ---- + ---- - 
                                2                           3     a
                               a                           a
 
                                       4                          5    5
          3       3  3       5  3   4 z        2  4       4  4   z    z
>   12 a z  - 23 a  z  - 10 a  z  + ---- - 14 a  z  - 10 a  z  - -- - -- + 
                                      2                           3   a
                                     a                           a
 
                                   6
         5       3  5      5  5   z       2  6      4  6      7      3  7
>   7 a z  + 13 a  z  + 6 a  z  - -- + 7 a  z  + 6 a  z  - a z  - 2 a  z  - 
                                   2
                                  a
 
     5  7    2  8    4  8
>   a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    2       2     1        1       1       1       1       1       1      2
2 + -- + 2 q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
     2           12  6    8  5    8  4    6  3    4  3    6  2    2  2    2
    q           q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
         2      4  2    4  3    8  4
>   t + q  t + q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n32
L10n31
L10n31
L10n33
L10n33