© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n27
L10n27
L10n29
L10n29
L10n28
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n28

Visit L10n28's page at Knotilus!

Acknowledgement

L10n28 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X7,14,8,15 X11,19,12,18 X15,20,16,5 X19,16,20,17 X17,13,18,12 X13,8,14,9 X2536 X4,9,1,10

Gauss Code: {{1, -9, 2, -10}, {9, -1, -3, 8, 10, -2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5}}

Jones Polynomial: - q-17/2 + q-15/2 - q-13/2 + q-9/2 - q-7/2 + q-5/2 - 2q-3/2 + q-1/2 - q1/2

A2 (sl(3)) Invariant: q-28 + 2q-26 + q-24 + q-22 - q-20 - q-18 - q-16 - q-14 + q-12 + 2q-8 + q-6 + q-4 + q-2 + 1 + q2

HOMFLY-PT Polynomial: - az-1 - 3az - az3 + a3z-1 + 3a3z + 4a3z3 + a3z5 + a5z-1 - 2a7z-1 - 2a7z + a9z-1

Kauffman Polynomial: az-1 - 4az + 4az3 - az5 - a2 + 3a2z4 - a2z6 + a3z-1 - 4a3z + 7a3z3 - 2a3z5 - 2a4 + 4a4z2 - a4z4 - a5z-1 + 8a5z - 13a5z3 + 7a5z5 - a5z7 - 3a6 + 8a6z2 - 13a6z4 + 7a6z6 - a6z8 - 2a7z-1 + 14a7z - 26a7z3 + 14a7z5 - 2a7z7 - a8 + 4a8z2 - 9a8z4 + 6a8z6 - a8z8 - a9z-1 + 6a9z - 10a9z3 + 6a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 2          1
j = 0           
j = -2        21 
j = -4      111  
j = -6      11   
j = -8    121    
j = -10   111     
j = -12   12      
j = -14 11        
j = -16           
j = -181          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 28]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 28]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[7, 14, 8, 15], X[11, 19, 12, 18], 
 
>   X[15, 20, 16, 5], X[19, 16, 20, 17], X[17, 13, 18, 12], X[13, 8, 14, 9], 
 
>   X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10}, {9, -1, -3, 8, 10, -2, -4, 7, -8, 3, -5, 6, -7, 4, 
 
>    -6, 5}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)    -(15/2)    -(13/2)    -(9/2)    -(7/2)    -(5/2)    2
-q        + q        - q        + q       - q       + q       - ---- + 
                                                                 3/2
                                                                q
 
       1
>   ------- - Sqrt[q]
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -28    2     -24    -22    -20    -18    -16    -14    -12   2     -6
1 + q    + --- + q    + q    - q    - q    - q    - q    + q    + -- + q   + 
            26                                                     8
           q                                                      q
 
     -4    -2    2
>   q   + q   + q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 28]][a, z]
Out[8]=   
        3    5      7    9
  a    a    a    2 a    a               3        7        3      3  3    3  5
-(-) + -- + -- - ---- + -- - 3 a z + 3 a  z - 2 a  z - a z  + 4 a  z  + a  z
  z    z    z     z     z
In[9]:=
Kauffman[Link[10, NonAlternating, 28]][a, z]
Out[9]=   
                              3    5      7    9
  2      4      6    8   a   a    a    2 a    a               3        5
-a  - 2 a  - 3 a  - a  + - + -- - -- - ---- - -- - 4 a z - 4 a  z + 8 a  z + 
                         z   z    z     z     z
 
        7        9        4  2      6  2      8  2        3      3  3
>   14 a  z + 6 a  z + 4 a  z  + 8 a  z  + 4 a  z  + 4 a z  + 7 a  z  - 
 
        5  3       7  3       9  3      2  4    4  4       6  4      8  4
>   13 a  z  - 26 a  z  - 10 a  z  + 3 a  z  - a  z  - 13 a  z  - 9 a  z  - 
 
       5      3  5      5  5       7  5      9  5    2  6      6  6      8  6
>   a z  - 2 a  z  + 7 a  z  + 14 a  z  + 6 a  z  - a  z  + 7 a  z  + 6 a  z  - 
 
     5  7      7  7    9  7    6  8    8  8
>   a  z  - 2 a  z  - a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4   2      1        1        1        1        1        2        1
q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
       2    18  8    14  7    14  6    12  5    10  5    12  4    10  4
      q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1       1        2       1       1       1      1      1     t     2  2
>   ----- + ------ + ----- + ----- + ----- + ----- + ---- + ---- + -- + q  t
     8  4    10  3    8  3    8  2    6  2    4  2    6      4      2
    q  t    q   t    q  t    q  t    q  t    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n28
L10n27
L10n27
L10n29
L10n29