PD Presentation: |
X6172 X10,3,11,4 X7,14,8,15 X11,19,12,18 X15,20,16,5 X19,16,20,17 X17,13,18,12 X13,8,14,9 X2536 X4,9,1,10 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, NonAlternating, 28]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, NonAlternating, 28]] |
Out[4]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[7, 14, 8, 15], X[11, 19, 12, 18],
> X[15, 20, 16, 5], X[19, 16, 20, 17], X[17, 13, 18, 12], X[13, 8, 14, 9],
> X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 2, -10}, {9, -1, -3, 8, 10, -2, -4, 7, -8, 3, -5, 6, -7, 4,
> -6, 5}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(17/2) -(15/2) -(13/2) -(9/2) -(7/2) -(5/2) 2
-q + q - q + q - q + q - ---- +
3/2
q
1
> ------- - Sqrt[q]
Sqrt[q] |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 2 -24 -22 -20 -18 -16 -14 -12 2 -6
1 + q + --- + q + q - q - q - q - q + q + -- + q +
26 8
q q
-4 -2 2
> q + q + q |
In[8]:= | HOMFLYPT[Link[10, NonAlternating, 28]][a, z] |
Out[8]= | 3 5 7 9
a a a 2 a a 3 7 3 3 3 3 5
-(-) + -- + -- - ---- + -- - 3 a z + 3 a z - 2 a z - a z + 4 a z + a z
z z z z z |
In[9]:= | Kauffman[Link[10, NonAlternating, 28]][a, z] |
Out[9]= | 3 5 7 9
2 4 6 8 a a a 2 a a 3 5
-a - 2 a - 3 a - a + - + -- - -- - ---- - -- - 4 a z - 4 a z + 8 a z +
z z z z z
7 9 4 2 6 2 8 2 3 3 3
> 14 a z + 6 a z + 4 a z + 8 a z + 4 a z + 4 a z + 7 a z -
5 3 7 3 9 3 2 4 4 4 6 4 8 4
> 13 a z - 26 a z - 10 a z + 3 a z - a z - 13 a z - 9 a z -
5 3 5 5 5 7 5 9 5 2 6 6 6 8 6
> a z - 2 a z + 7 a z + 14 a z + 6 a z - a z + 7 a z + 6 a z -
5 7 7 7 9 7 6 8 8 8
> a z - 2 a z - a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -4 2 1 1 1 1 1 2 1
q + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
2 18 8 14 7 14 6 12 5 10 5 12 4 10 4
q q t q t q t q t q t q t q t
1 1 2 1 1 1 1 1 t 2 2
> ----- + ------ + ----- + ----- + ----- + ----- + ---- + ---- + -- + q t
8 4 10 3 8 3 8 2 6 2 4 2 6 4 2
q t q t q t q t q t q t q t q t q |