PD Presentation: |
X6172 X18,7,19,8 X4,19,1,20 X9,14,10,15 X8493 X12,5,13,6 X20,13,5,14 X11,16,12,17 X15,10,16,11 X2,18,3,17 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, NonAlternating, 16]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, NonAlternating, 16]] |
Out[4]= | PD[X[6, 1, 7, 2], X[18, 7, 19, 8], X[4, 19, 1, 20], X[9, 14, 10, 15],
> X[8, 4, 9, 3], X[12, 5, 13, 6], X[20, 13, 5, 14], X[11, 16, 12, 17],
> X[15, 10, 16, 11], X[2, 18, 3, 17]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, 5, -3}, {6, -1, 2, -5, -4, 9, -8, -6, 7, 4, -9, 8, 10, -2,
> 3, -7}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) 4 6 9 10 9 9 5 3
-q + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ----
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2
q q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -30 3 3 2 -18 -16 4 -12 4 4 3
q - --- - --- - --- + q - q + --- + q + --- + -- + --
26 22 20 14 10 8 4
q q q q q q q |
In[8]:= | HOMFLYPT[Link[10, NonAlternating, 16]][a, z] |
Out[8]= | 3 5 7
-3 a 5 a 2 a 3 5 7 9 3 3 5 3
----- + ---- - ---- - 6 a z + 10 a z - 5 a z + a z - 3 a z + 7 a z -
z z z
7 3 5 5
> 3 a z + 2 a z |
In[9]:= | Kauffman[Link[10, NonAlternating, 16]][a, z] |
Out[9]= | 3 5 7
4 6 10 3 a 5 a 2 a 3 5 7 9
5 a + 5 a - a - ---- - ---- - ---- + 8 a z + 15 a z + 9 a z + 2 a z -
z z z
4 2 6 2 8 2 10 2 3 3 5 3 7 3
> 7 a z - 14 a z - 10 a z - 3 a z - 6 a z - 19 a z - 17 a z -
9 3 11 3 4 4 6 4 8 4 10 4 5 5
> 3 a z + a z + 3 a z + 15 a z + 20 a z + 8 a z + 11 a z +
7 5 9 5 11 5 4 6 6 6 8 6 10 6
> 21 a z + 9 a z - a z - 3 a z - 5 a z - 6 a z - 4 a z -
5 7 7 7 9 7 6 8 8 8
> 5 a z - 10 a z - 5 a z - 2 a z - 2 a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 3 1 3 1 3 3 6 3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 20 8 18 7 16 7 16 6 14 6 14 5 12 5
q q q t q t q t q t q t q t q t
4 6 5 4 4 5 1 4
> ------ + ------ + ------ + ----- + ----- + ----- + ---- + ----
12 4 10 4 10 3 8 3 8 2 6 2 6 4
q t q t q t q t q t q t q t q t |