PD Presentation: |
X6172 X18,7,19,8 X4,19,1,20 X9,14,10,15 X8493 X5,13,6,12 X13,5,14,20 X11,16,12,17 X15,10,16,11 X2,18,3,17 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, NonAlternating, 14]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, NonAlternating, 14]] |
Out[4]= | PD[X[6, 1, 7, 2], X[18, 7, 19, 8], X[4, 19, 1, 20], X[9, 14, 10, 15],
> X[8, 4, 9, 3], X[5, 13, 6, 12], X[13, 5, 14, 20], X[11, 16, 12, 17],
> X[15, 10, 16, 11], X[2, 18, 3, 17]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, 5, -3}, {-6, -1, 2, -5, -4, 9, -8, 6, -7, 4, -9, 8, 10, -2,
> 3, 7}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(13/2) 2 2 2 2 -(3/2) 1 3/2
-q + ----- - ---- + ---- - ---- + q - ------- - Sqrt[q] + q -
11/2 9/2 7/2 5/2 Sqrt[q]
q q q q
5/2
> q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -20 -16 -12 -8 -6 -2 2 4 6 8
2 + q + q - q - q + q + q + q + 2 q + q + q |
In[8]:= | HOMFLYPT[Link[10, NonAlternating, 14]][a, z] |
Out[8]= | 3 5 3
-2 4 a 3 a a 3 z 3 5 z 3 3 3
--- + --- - ---- + -- - --- + 9 a z - 8 a z + 2 a z - -- + 6 a z - 5 a z +
a z z z z a a
5 3 5 3 5
> a z + a z - a z |
In[9]:= | Kauffman[Link[10, NonAlternating, 14]][a, z] |
Out[9]= | 3 5
2 4 6 2 4 a 3 a a 7 z 3
2 + 3 a + 3 a + a - --- - --- - ---- - -- + --- + 19 a z + 15 a z +
a z z z z a
3
5 7 2 2 2 4 2 6 2 10 z 3
> 2 a z - a z + z - 5 a z - 10 a z - 4 a z - ----- - 30 a z -
a
5
3 3 5 3 7 3 4 2 4 4 4 6 4 6 z
> 24 a z - a z + 3 a z - 8 z - 6 a z + 9 a z + 7 a z + ---- +
a
5 3 5 5 5 7 5 6 2 6 4 6 6 6
> 15 a z + 13 a z + 3 a z - a z + 6 z + 6 a z - 2 a z - 2 a z -
7
z 7 3 7 5 7 8 2 8
> -- - 2 a z - 2 a z - a z - z - a z
a |
In[10]:= | Kh[L][q, t] |
Out[10]= | -4 2 1 1 1 1 1 2 1
3 + q + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
2 14 6 12 5 10 5 10 4 8 4 8 3 6 3
q q t q t q t q t q t q t q t
1 1 2 2 1 t 2 2 2 3 6 4
> ----- + ----- + ----- + ---- + ---- + t + -- + q t + q t + q t
8 2 6 2 4 2 4 2 2
q t q t q t q t q t q |