© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n103
L10n103
L10n105
L10n105
L10n104
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L10n104

Visit L10n104's page at Knotilus!

Acknowledgement

L10n104 as Morse Link
DrawMorseLink

PD Presentation: X6172 X5,12,6,13 X3849 X15,2,16,3 X7,17,8,16 X14,9,11,10 X20,13,15,14 X19,5,20,10 X11,18,12,19 X4,17,1,18

Gauss Code: {{1, 4, -3, -10}, {-9, 2, 7, -6}, {-2, -1, -5, 3, 6, 8}, {-4, 5, 10, 9, -8, -7}}

Jones Polynomial: - q-17/2 - q-13/2 - q-11/2 - q-9/2 - 2q-7/2 - q-5/2 - q-3/2

A2 (sl(3)) Invariant: q-28 + 3q-26 + 5q-24 + 7q-22 + 8q-20 + 10q-18 + 11q-16 + 11q-14 + 10q-12 + 7q-10 + 5q-8 + 2q-6 + q-4

HOMFLY-PT Polynomial: - a3z-3 - 4a3z-1 - 4a3z - a3z3 + 3a5z-3 + 9a5z-1 + 6a5z + a5z3 - 3a7z-3 - 6a7z-1 - 2a7z + a9z-3 + a9z-1

Kauffman Polynomial: a3z-3 - 5a3z-1 + 4a3z - a3z3 - 3a4z-2 + 10a4 - 6a4z2 + a4z4 + 3a5z-3 - 12a5z-1 + 15a5z - 7a5z3 + a5z5 - 6a6z-2 + 19a6 - 20a6z2 + 8a6z4 - a6z6 + 3a7z-3 - 12a7z-1 + 23a7z - 21a7z3 + 8a7z5 - a7z7 - 3a8z-2 + 10a8 - 14a8z2 + 7a8z4 - a8z6 + a9z-3 - 5a9z-1 + 12a9z - 15a9z3 + 7a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2        1
j = -4      1 1
j = -6     14  
j = -8      3  
j = -10   13    
j = -12    2    
j = -14  1      
j = -161        
j = -181        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 104]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 104]]
Out[4]=   
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[15, 2, 16, 3], 
 
>   X[7, 17, 8, 16], X[14, 9, 11, 10], X[20, 13, 15, 14], X[19, 5, 20, 10], 
 
>   X[11, 18, 12, 19], X[4, 17, 1, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -3, -10}, {-9, 2, 7, -6}, {-2, -1, -5, 3, 6, 8}, 
 
>   {-4, 5, 10, 9, -8, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)    -(13/2)    -(11/2)    -(9/2)    2      -(5/2)    -(3/2)
-q        - q        - q        - q       - ---- - q       - q
                                             7/2
                                            q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -28    3     5     7     8    10    11    11    10     7    5    2     -4
q    + --- + --- + --- + --- + --- + --- + --- + --- + --- + -- + -- + q
        26    24    22    20    18    16    14    12    10    8    6
       q     q     q     q     q     q     q     q     q     q    q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 104]][a, z]
Out[8]=   
   3       5      7    9      3      5      7    9
  a     3 a    3 a    a    4 a    9 a    6 a    a       3        5        7
-(--) + ---- - ---- + -- - ---- + ---- - ---- + -- - 4 a  z + 6 a  z - 2 a  z - 
   3      3      3     3    z      z      z     z
  z      z      z     z
 
     3  3    5  3
>   a  z  + a  z
In[9]:=
Kauffman[Link[10, NonAlternating, 104]][a, z]
Out[9]=   
                         3      5      7    9      4      6      8      3
    4       6       8   a    3 a    3 a    a    3 a    6 a    3 a    5 a
10 a  + 19 a  + 10 a  + -- + ---- + ---- + -- - ---- - ---- - ---- - ---- - 
                         3     3      3     3     2      2      2     z
                        z     z      z     z     z      z      z
 
        5       7      9
    12 a    12 a    5 a       3         5         7         9        4  2
>   ----- - ----- - ---- + 4 a  z + 15 a  z + 23 a  z + 12 a  z - 6 a  z  - 
      z       z      z
 
        6  2       8  2    3  3      5  3       7  3       9  3    4  4
>   20 a  z  - 14 a  z  - a  z  - 7 a  z  - 21 a  z  - 15 a  z  + a  z  + 
 
       6  4      8  4    5  5      7  5      9  5    6  6    8  6    7  7
>   8 a  z  + 7 a  z  + a  z  + 8 a  z  + 7 a  z  - a  z  - a  z  - a  z  - 
 
     9  7
>   a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4    -2     1        1        1        1        2        3        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 
             18  8    16  8    14  6    10  5    12  4    10  4    6  3
            q   t    q   t    q   t    q   t    q   t    q   t    q  t
 
      3       4       1
>   ----- + ----- + -----
     8  2    6  2    4  2
    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n104
L10n103
L10n103
L10n105
L10n105