PD Presentation: |
X6172 X14,7,15,8 X4,15,1,16 X5,12,6,13 X3849 X9,16,10,17 X17,20,18,5 X11,19,12,18 X19,11,20,10 X13,2,14,3 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, NonAlternating, 10]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, NonAlternating, 10]] |
Out[4]= | PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[5, 12, 6, 13],
> X[3, 8, 4, 9], X[9, 16, 10, 17], X[17, 20, 18, 5], X[11, 19, 12, 18],
> X[19, 11, 20, 10], X[13, 2, 14, 3]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, 10, -5, -3}, {-4, -1, 2, 5, -6, 9, -8, 4, -10, -2, 3, 6, -7, 8,
> -9, 7}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(17/2) -(15/2) -(13/2) 2 2 -(7/2) 2 -(3/2)
-q + q - q + ----- - ---- + q - ---- + q -
11/2 9/2 5/2
q q q
1
> -------
Sqrt[q] |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -30 -26 -24 -20 2 2 2 2 -6 -4 -2
q + q + q - q - --- + --- + --- + -- + q + q + q
18 12 10 8
q q q q |
In[8]:= | HOMFLYPT[Link[10, NonAlternating, 10]][a, z] |
Out[8]= | 3 5 7 9
-2 a 4 a 3 a a 3 5 7 9 3 3
----- + ---- - ---- + -- - 6 a z + 9 a z - 6 a z + a z - 5 a z +
z z z z
5 3 7 3 3 5 5 5 7 5 5 7
> 11 a z - 5 a z - a z + 6 a z - a z + a z |
In[9]:= | Kauffman[Link[10, NonAlternating, 10]][a, z] |
Out[9]= | 3 5 7 9
4 6 8 10 2 a 4 a 3 a a 3 5
2 a + 3 a + 3 a + a - ---- - ---- - ---- - -- + 8 a z + 17 a z +
z z z z
7 9 11 4 2 6 2 8 2 10 2
> 12 a z + 2 a z - a z - 2 a z - 5 a z - 4 a z - a z -
3 3 5 3 7 3 9 3 4 4 6 4 8 4
> 11 a z - 28 a z - 18 a z - a z - 5 a z - a z + 4 a z +
3 5 5 5 7 5 4 6 6 6 8 6 3 7
> 6 a z + 17 a z + 11 a z + 5 a z + 4 a z - a z - a z -
5 7 7 7 4 8 6 8
> 3 a z - 2 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -6 2 1 1 1 1 1 1 2
q + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 18 6 16 6 16 5 14 5 12 5 14 4 12 4
q q t q t q t q t q t q t q t
1 2 2 1 2 1 1 1 t 2
> ------ + ------ + ------ + ------ + ----- + ----- + ---- + ---- + -- + t
10 4 12 3 10 3 10 2 8 2 6 2 8 6 4
q t q t q t q t q t q t q t q t q |