PD Presentation: |
X10,1,11,2 X12,4,13,3 X20,12,9,11 X2,9,3,10 X4,20,5,19 X14,5,15,6 X18,13,19,14 X16,7,17,8 X6,15,7,16 X8,17,1,18 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, Alternating, 93]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, Alternating, 93]] |
Out[4]= | PD[X[10, 1, 11, 2], X[12, 4, 13, 3], X[20, 12, 9, 11], X[2, 9, 3, 10],
> X[4, 20, 5, 19], X[14, 5, 15, 6], X[18, 13, 19, 14], X[16, 7, 17, 8],
> X[6, 15, 7, 16], X[8, 17, 1, 18]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -4, 2, -5, 6, -9, 8, -10},
> {4, -1, 3, -2, 7, -6, 9, -8, 10, -7, 5, -3}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(17/2) 3 5 8 9 10 9 7 4
q - ----- + ----- - ----- + ---- - ---- + ---- - ---- + ------- -
15/2 13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q q
3/2
> 3 Sqrt[q] + q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -26 -22 3 -14 -12 -10 3 -6 2 -2 2 4
-q + q + --- + q + q - q + -- - q + -- + q + q - q
18 8 4
q q q |
In[8]:= | HOMFLYPT[Link[10, Alternating, 93]][a, z] |
Out[8]= | 3 5
a a 3 5 7 3 3 3 5 3
-(--) + -- + a z - 7 a z + 6 a z - 2 a z + 3 a z - 9 a z + 7 a z -
z z
7 3 5 3 5 5 5 3 7
> a z + a z - 5 a z + 2 a z - a z |
In[9]:= | Kauffman[Link[10, Alternating, 93]][a, z] |
Out[9]= | 3 5
4 a a 3 5 9 2 2 2 4 2 6 2
a - -- - -- + 2 a z + 10 a z + 9 a z - a z - z + a z + 4 a z + a z +
z z
10 2 3 3 3 5 3 7 3 9 3 4 2 4
> a z - 10 a z - 26 a z - 21 a z - a z + 4 a z + 3 z - 6 a z -
4 4 6 4 8 4 10 4 5 3 5 5 5
> 16 a z - 2 a z + 4 a z - a z + 11 a z + 22 a z + 18 a z +
7 5 9 5 6 2 6 4 6 6 6 8 6 7
> 4 a z - 3 a z - z + 9 a z + 17 a z + 3 a z - 4 a z - 3 a z -
3 7 5 7 7 7 2 8 4 8 6 8 3 9 5 9
> 4 a z - 5 a z - 4 a z - 3 a z - 6 a z - 3 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 5 1 2 1 3 2 5 4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 18 7 16 6 14 6 14 5 12 5 12 4 10 4
q q q t q t q t q t q t q t q t
5 4 5 5 4 5 2 t 2 2 2
> ------ + ----- + ----- + ----- + ---- + ---- + 2 t + --- + t + 2 q t +
10 3 8 3 8 2 6 2 6 4 2
q t q t q t q t q t q t q
4 3
> q t |