PD Presentation: |
X8192 X12,3,13,4 X20,10,7,9 X14,17,15,18 X16,5,17,6 X4,15,5,16 X18,13,19,14 X10,20,11,19 X2738 X6,11,1,12 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, Alternating, 83]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, Alternating, 83]] |
Out[4]= | PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[20, 10, 7, 9], X[14, 17, 15, 18],
> X[16, 5, 17, 6], X[4, 15, 5, 16], X[18, 13, 19, 14], X[10, 20, 11, 19],
> X[2, 7, 3, 8], X[6, 11, 1, 12]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 2, -6, 5, -10},
> {9, -1, 3, -8, 10, -2, 7, -4, 6, -5, 4, -7, 8, -3}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) 3 6 9 12 12 12 9 6
-q + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- +
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2
q q q q q q q q
3
> ------- - Sqrt[q]
Sqrt[q] |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -30 2 2 4 3 2 3 2 2
-1 + q - --- + --- + --- + --- + -- - -- + -- + q
26 24 18 14 8 6 4
q q q q q q q |
In[8]:= | HOMFLYPT[Link[10, Alternating, 83]][a, z] |
Out[8]= | 5 7
a a 5 7 9 3 3 3 7 3 3 5 5 5
-(--) + -- - a z - 2 a z - a z + a z - a z + a z - 2 a z + a z + a z
z z |
In[9]:= | Kauffman[Link[10, Alternating, 83]][a, z] |
Out[9]= | 5 7
6 a a 3 5 7 9 11 2 2 4 2
-a + -- + -- - a z + a z - a z - a z + a z - a z - 3 a z - 3 a z -
z z
8 2 10 2 3 3 3 5 3 7 3 9 3
> 3 a z - 3 a z + 2 a z - 2 a z - 7 a z - 7 a z - 2 a z +
11 3 2 4 4 4 8 4 10 4 5 3 5
> 2 a z + 6 a z + 6 a z + 6 a z + 6 a z - a z + 6 a z +
5 5 7 5 9 5 11 5 2 6 6 6 10 6
> 14 a z + 14 a z + 6 a z - a z - 3 a z + 6 a z - 3 a z -
3 7 5 7 7 7 9 7 4 8 6 8 8 8
> 4 a z - 7 a z - 7 a z - 4 a z - 3 a z - 6 a z - 3 a z -
5 9 7 9
> a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 4 1 2 1 4 3 6 3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 20 8 18 7 16 7 16 6 14 6 14 5 12 5
q q q t q t q t q t q t q t q t
6 6 6 6 6 6 3 6 t
> ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + 2 t + -- +
12 4 10 4 10 3 8 3 8 2 6 2 6 4 2
q t q t q t q t q t q t q t q t q
2 2
> q t |