PD Presentation: |
X8192 X2,9,3,10 X10,3,11,4 X6718 X16,11,17,12 X14,6,15,5 X4,16,5,15 X20,17,7,18 X18,14,19,13 X12,20,13,19 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, Alternating, 66]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, Alternating, 66]] |
Out[4]= | PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[6, 7, 1, 8],
> X[16, 11, 17, 12], X[14, 6, 15, 5], X[4, 16, 5, 15], X[20, 17, 7, 18],
> X[18, 14, 19, 13], X[12, 20, 13, 19]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2, 3, -7, 6, -4},
> {4, -1, 2, -3, 5, -10, 9, -6, 7, -5, 8, -9, 10, -8}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(15/2) 3 5 7 9 8 8 6
-q + ----- - ----- + ---- - ---- + ---- - ---- + ------- - 4 Sqrt[q] +
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q
3/2 5/2
> 2 q - q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -22 -20 -18 2 -10 3 -4 -2 2 6 8
-1 + q - q + q + --- - q + -- + q + q + q + q + q
12 8
q q |
In[8]:= | HOMFLYPT[Link[10, Alternating, 66]][a, z] |
Out[8]= | 3 5 3
1 2 a 2 a a 3 z 3 5 z 3
-(---) + --- - ---- + -- - --- + 8 a z - 8 a z + 2 a z - -- + 8 a z -
a z z z z a a
3 3 5 3 5 3 5 5 5 3 7
> 9 a z + 3 a z + 2 a z - 5 a z + a z - a z |
In[9]:= | Kauffman[Link[10, Alternating, 66]][a, z] |
Out[9]= | 3 5
2 1 2 a 2 a a 5 z 3 5 7 2
-a - --- - --- - ---- - -- + --- + 14 a z + 12 a z + 2 a z - a z + 5 z +
a z z z z a
3
2 2 6 2 8 2 8 z 3 3 3 5 3 7 3
> 7 a z - a z + a z - ---- - 29 a z - 31 a z - 5 a z + 4 a z -
a
5
9 3 4 2 4 6 4 8 4 5 z 5 3 5
> a z - 12 z - 22 a z + 7 a z - 3 a z + ---- + 18 a z + 29 a z +
a
7
5 5 7 5 6 2 6 4 6 6 6 z 7
> 11 a z - 5 a z + 9 z + 22 a z + 7 a z - 6 a z - -- - a z -
a
3 7 5 7 8 2 8 4 8 9 3 9
> 6 a z - 6 a z - 2 z - 6 a z - 4 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 4 5 1 2 1 3 2 4 3 5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
4 2 16 6 14 5 12 5 12 4 10 4 10 3 8 3 8 2
q q q t q t q t q t q t q t q t q t
5 4 4 3 t 2 2 2 2 3 4 3 6 4
> ----- + ---- + ---- + 3 t + --- + t + 3 q t + q t + q t + q t
6 2 6 4 2
q t q t q t q |