PD Presentation: |
X8192 X16,7,17,8 X10,4,11,3 X12,5,13,6 X20,12,7,11 X18,13,19,14 X2,15,3,16 X4,19,5,20 X14,10,15,9 X6,18,1,17 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, Alternating, 56]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, Alternating, 56]] |
Out[4]= | PD[X[8, 1, 9, 2], X[16, 7, 17, 8], X[10, 4, 11, 3], X[12, 5, 13, 6],
> X[20, 12, 7, 11], X[18, 13, 19, 14], X[2, 15, 3, 16], X[4, 19, 5, 20],
> X[14, 10, 15, 9], X[6, 18, 1, 17]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -7, 3, -8, 4, -10},
> {2, -1, 9, -3, 5, -4, 6, -9, 7, -2, 10, -6, 8, -5}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(13/2) 5 11 16 21 22 21
-q + ----- - ---- + ---- - ---- + ---- - ------- + 16 Sqrt[q] -
11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q
3/2 5/2 7/2
> 11 q + 5 q - q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -20 2 -16 4 3 4 -8 -6 5 3 2 4
6 + q - --- - q + --- - --- + --- + q - q + -- - -- - 2 q - q +
18 14 12 10 4 2
q q q q q q
6 8 10
> 3 q - 3 q + q |
In[8]:= | HOMFLYPT[Link[10, Alternating, 56]][a, z] |
Out[8]= | 3 3 5
a a z 3 3 3 5 3 z 5 3 5 7
-(-) + -- - a z - -- + 3 a z - 3 a z + a z - -- + 3 a z - 2 a z + a z
z z a a |
In[9]:= | Kauffman[Link[10, Alternating, 56]][a, z] |
Out[9]= | 3 3 4
2 a a 3 6 z 3 3 3 5 3 4 4 z
-a + - + -- - a z - a z - ---- - 18 a z - 18 a z - 6 a z - 4 z + ---- -
z z a 2
a
5 5
2 4 4 4 6 4 z 16 z 5 3 5 5 5
> 16 a z - 4 a z + 4 a z - -- + ----- + 39 a z + 39 a z + 16 a z -
3 a
a
6 7
7 5 6 5 z 2 6 4 6 6 6 11 z 7
> a z + 16 z - ---- + 42 a z + 16 a z - 5 a z - ----- - 14 a z -
2 a
a
3 7 5 7 8 2 8 4 8 9 3 9
> 14 a z - 11 a z - 12 z - 24 a z - 12 a z - 5 a z - 5 a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 10 1 4 1 7 4 9 7 12
12 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- +
2 14 6 12 5 10 5 10 4 8 4 8 3 6 3 6 2
q q t q t q t q t q t q t q t q t
10 11 11 2 2 2 4 2 4 3 6 3
> ----- + ---- + ---- + 7 t + 9 q t + 4 q t + 7 q t + q t + 4 q t +
4 2 4 2
q t q t q t
8 4
> q t |