© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10a47
L10a47
L10a49
L10a49
L10a48
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10a48

Visit L10a48's page at Knotilus!

Acknowledgement

L10a48 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,3,15,4 X20,8,5,7 X18,10,19,9 X16,12,17,11 X12,16,13,15 X10,18,11,17 X8,20,9,19 X2536 X4,13,1,14

Gauss Code: {{1, -9, 2, -10}, {9, -1, 3, -8, 4, -7, 5, -6, 10, -2, 6, -5, 7, -4, 8, -3}}

Jones Polynomial: - q-9/2 + q-7/2 - 3q-5/2 + 3q-3/2 - 4q-1/2 + 4q1/2 - 4q3/2 + 3q5/2 - 2q7/2 + 2q9/2 - q11/2

A2 (sl(3)) Invariant: q-16 + 2q-14 + q-12 + 2q-10 + 2q-8 + q-4 + q6 - q10 - q14 + q18

HOMFLY-PT Polynomial: - a-5z + a-3z + a-3z3 + a-1z3 + az3 - a3z-1 - 2a3z + a5z-1

Kauffman Polynomial: a-5z - 6a-5z3 + 5a-5z5 - a-5z7 + 7a-4z2 - 17a-4z4 + 11a-4z6 - 2a-4z8 - 3a-3z5 + 4a-3z7 - a-3z9 + 7a-2z2 - 18a-2z4 + 14a-2z6 - 3a-2z8 - a-1z + 6a-1z3 - 6a-1z5 + 4a-1z7 - a-1z9 + 2z6 - z8 + az5 - az7 - a2z6 - a3z-1 + 2a3z - a3z3 - a3z5 + a4 - a4z4 - a5z-1 + 2a5z - a5z3

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 12          1
j = 10         1 
j = 8        11 
j = 6       21  
j = 4      21   
j = 2     22    
j = 0    22     
j = -2   23      
j = -4  11       
j = -6  2        
j = -811         
j = -101          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, Alternating, 48]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, Alternating, 48]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[20, 8, 5, 7], X[18, 10, 19, 9], 
 
>   X[16, 12, 17, 11], X[12, 16, 13, 15], X[10, 18, 11, 17], X[8, 20, 9, 19], 
 
>   X[2, 5, 3, 6], X[4, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10}, {9, -1, 3, -8, 4, -7, 5, -6, 10, -2, 6, -5, 7, -4, 
 
>    8, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(9/2)    -(7/2)    3      3        4                     3/2      5/2
-q       + q       - ---- + ---- - ------- + 4 Sqrt[q] - 4 q    + 3 q    - 
                      5/2    3/2   Sqrt[q]
                     q      q
 
       7/2      9/2    11/2
>   2 q    + 2 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -16    2     -12    2    2     -4    6    10    14    18
q    + --- + q    + --- + -- + q   + q  - q   - q   + q
        14           10    8
       q            q     q
In[8]:=
HOMFLYPT[Link[10, Alternating, 48]][a, z]
Out[8]=   
   3     5                       3    3
  a     a    z    z       3     z    z       3
-(--) + -- - -- + -- - 2 a  z + -- + -- + a z
  z     z     5    3             3   a
             a    a             a
In[9]:=
Kauffman[Link[10, Alternating, 48]][a, z]
Out[9]=   
      3    5                                 2      2      3      3
 4   a    a    z    z      3        5     7 z    7 z    6 z    6 z     3  3
a  - -- - -- + -- - - + 2 a  z + 2 a  z + ---- + ---- - ---- + ---- - a  z  - 
     z    z     5   a                       4      2      5     a
               a                           a      a      a
 
                4       4              5      5      5
     5  3   17 z    18 z     4  4   5 z    3 z    6 z       5    3  5      6
>   a  z  - ----- - ----- - a  z  + ---- - ---- - ---- + a z  - a  z  + 2 z  + 
              4       2               5      3     a
             a       a               a      a
 
        6       6            7      7      7                  8      8    9    9
    11 z    14 z     2  6   z    4 z    4 z       7    8   2 z    3 z    z    z
>   ----- + ----- - a  z  - -- + ---- + ---- - a z  - z  - ---- - ---- - -- - --
      4       2              5     3     a                   4      2     3   a
     a       a              a     a                         a      a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
    3      1        1       1       2       1      1      2              2
2 + -- + ------ + ----- + ----- + ----- + ----- + ---- + ---- + 2 t + 2 q  t + 
     2    10  4    8  4    8  3    6  2    4  2    4      2
    q    q   t    q  t    q  t    q  t    q  t    q  t   q  t
 
       2  2      4  2    4  3      6  3    6  4    8  4    8  5    10  5
>   2 q  t  + 2 q  t  + q  t  + 2 q  t  + q  t  + q  t  + q  t  + q   t  + 
 
     12  6
>   q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10a48
L10a47
L10a47
L10a49
L10a49