PD Presentation: |
X6172 X16,7,17,8 X18,14,19,13 X14,18,15,17 X4,19,1,20 X10,5,11,6 X12,3,13,4 X20,11,5,12 X2,9,3,10 X8,15,9,16 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, Alternating, 42]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, Alternating, 42]] |
Out[4]= | PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[18, 14, 19, 13], X[14, 18, 15, 17],
> X[4, 19, 1, 20], X[10, 5, 11, 6], X[12, 3, 13, 4], X[20, 11, 5, 12],
> X[2, 9, 3, 10], X[8, 15, 9, 16]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 7, -5}, {6, -1, 2, -10, 9, -6, 8, -7, 3, -4, 10, -2, 4, -3,
> 5, -8}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) 3 6 10 13 14 14 10 8
-q + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- +
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2
q q q q q q q q
4
> ------- - Sqrt[q]
Sqrt[q] |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -30 2 2 -22 2 3 -16 3 -12 -10 4 2
-2 + q - --- + --- - q - --- + --- - q + --- + q + q + -- - -- +
26 24 20 18 14 8 6
q q q q q q q
3 2
> -- + q
4
q |
In[8]:= | HOMFLYPT[Link[10, Alternating, 42]][a, z] |
Out[8]= | 3 5
a a 3 7 9 3 7 3 3 5 5 5
-(--) + -- - 2 a z - a z + a z - a z - 2 a z + a z + a z
z z |
In[9]:= | Kauffman[Link[10, Alternating, 42]][a, z] |
Out[9]= | 3 5
4 a a 3 5 7 11 4 2 6 2 8 2
a - -- - -- + 2 a z + 2 a z + a z - a z + 2 a z + 6 a z + a z -
z z
10 2 3 3 3 5 3 7 3 11 3 2 4
> 3 a z + a z - 7 a z - 14 a z - 8 a z + 2 a z + 6 a z -
4 4 6 4 8 4 10 4 5 3 5 5 5
> 6 a z - 19 a z - a z + 6 a z - a z + 14 a z + 20 a z +
7 5 9 5 11 5 2 6 4 6 6 6 8 6
> 11 a z + 5 a z - a z - 4 a z + 10 a z + 21 a z + 4 a z -
10 6 3 7 5 7 7 7 9 7 4 8 6 8
> 3 a z - 7 a z - 7 a z - 4 a z - 4 a z - 6 a z - 10 a z -
8 8 5 9 7 9
> 4 a z - 2 a z - 2 a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 4 5 1 2 1 4 2 6 4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 20 8 18 7 16 7 16 6 14 6 14 5 12 5
q q q t q t q t q t q t q t q t
7 7 8 6 6 8 4 6 t
> ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + 3 t + -- +
12 4 10 4 10 3 8 3 8 2 6 2 6 4 2
q t q t q t q t q t q t q t q t q
2 2
> q t |