PD Presentation: |
X6172 X12,3,13,4 X18,8,19,7 X20,13,5,14 X14,19,15,20 X16,10,17,9 X10,16,11,15 X8,18,9,17 X2536 X4,11,1,12 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, Alternating, 40]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, Alternating, 40]] |
Out[4]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[18, 8, 19, 7], X[20, 13, 5, 14],
> X[14, 19, 15, 20], X[16, 10, 17, 9], X[10, 16, 11, 15], X[8, 18, 9, 17],
> X[2, 5, 3, 6], X[4, 11, 1, 12]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 2, -10}, {9, -1, 3, -8, 6, -7, 10, -2, 4, -5, 7, -6, 8, -3,
> 5, -4}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(13/2) 2 5 6 8 9 8 3/2
-q + ----- - ---- + ---- - ---- + ---- - ------- + 6 Sqrt[q] - 4 q +
11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q
5/2 7/2
> 2 q - q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -22 2 2 3 -12 -10 -8 2 -2 6 8 12
3 + q + --- + --- + --- - q + q - q - -- - q + 2 q - q + q
20 16 14 6
q q q q |
In[8]:= | HOMFLYPT[Link[10, Alternating, 40]][a, z] |
Out[8]= | 3 5 7 3
1 2 a a a a z z 5 z 3 3 3
-(---) + --- - -- - -- + -- - -- - - + 3 a z - 3 a z + -- + 3 a z + 2 a z
a z z z z z 3 a a
a |
In[9]:= | Kauffman[Link[10, Alternating, 40]][a, z] |
Out[9]= | 3 5 7
2 4 6 1 2 a a a a z 5 z 3
-1 - 3 a - 2 a - a - --- - --- - -- + -- + -- - -- + --- + 14 a z + 8 a z -
a z z z z z 3 a
a
2 3 3
5 7 2 z 2 2 4 2 3 z 9 z 3
> 3 a z - 3 a z + 7 z - -- + 13 a z + 5 a z + ---- - ---- - 28 a z -
2 3 a
a a
4
3 3 5 3 7 3 4 5 z 2 4 4 4
> 13 a z + 6 a z + 3 a z - 14 z + ---- - 26 a z - 3 a z +
2
a
5 5 6
6 4 z 9 z 5 3 5 5 5 7 5 6 2 z
> 4 a z - -- + ---- + 15 a z + 7 a z + a z - a z + 10 z - ---- +
3 a 2
a a
7
2 6 4 6 6 6 3 z 7 3 7 5 7 8
> 17 a z + 3 a z - 2 a z - ---- - 2 a z - a z - 2 a z - 3 z -
a
2 8 4 8 9 3 9
> 5 a z - 2 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 4 1 1 1 4 2 3 3 5
5 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- +
2 14 6 12 5 10 5 10 4 8 4 8 3 6 3 6 2
q q t q t q t q t q t q t q t q t
3 4 5 2 2 2 4 2 4 3 6 3 8 4
> ----- + ---- + ---- + 3 t + 3 q t + q t + 3 q t + q t + q t + q t
4 2 4 2
q t q t q t |