© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10a31
L10a31
L10a33
L10a33
L10a32
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10a32

Visit L10a32's page at Knotilus!

Acknowledgement

L10a32 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X16,8,17,7 X20,18,5,17 X18,11,19,12 X10,19,11,20 X14,10,15,9 X8,16,9,15 X2536 X4,14,1,13

Gauss Code: {{1, -9, 2, -10}, {9, -1, 3, -8, 7, -6, 5, -2, 10, -7, 8, -3, 4, -5, 6, -4}}

Jones Polynomial: - q-7/2 + 2q-5/2 - 6q-3/2 + 9q-1/2 - 11q1/2 + 12q3/2 - 12q5/2 + 9q7/2 - 6q9/2 + 3q11/2 - q13/2

A2 (sl(3)) Invariant: q-12 + q-10 + 4q-6 + q-4 - q-2 + 2 - 3q2 + q4 - q6 + 2q10 - 2q12 + 3q14 + q16 - q18 + q20

HOMFLY-PT Polynomial: - a-5z-1 - a-5z - a-5z3 + 2a-3z-1 + 4a-3z + 2a-3z3 + a-3z5 - a-1z-1 - 2a-1z + a-1z5 - az-1 - 2az - 2az3 + a3z-1 + a3z

Kauffman Polynomial: 2a-7z3 - a-7z5 - 2a-6z2 + 6a-6z4 - 3a-6z6 - a-5z-1 + 5a-5z - 11a-5z3 + 12a-5z5 - 5a-5z7 - a-4 + a-4z2 - 3a-4z4 + 6a-4z6 - 4a-4z8 - 2a-3z-1 + 15a-3z - 33a-3z3 + 28a-3z5 - 9a-3z7 - a-3z9 - 3a-2 + 11a-2z2 - 16a-2z4 + 14a-2z6 - 7a-2z8 - a-1z-1 + 10a-1z - 21a-1z3 + 19a-1z5 - 7a-1z7 - a-1z9 - 2 + 8z2 - 4z4 + 3z6 - 3z8 + az-1 - 3az + 2az3 + 3az5 - 3az7 - a2 + 3a2z4 - 2a2z6 + a3z-1 - 3a3z + 3a3z3 - a3z5

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 14          1
j = 12         2 
j = 10        41 
j = 8       52  
j = 6      74   
j = 4     55    
j = 2    67     
j = 0   57      
j = -2  14       
j = -4 15        
j = -6 1         
j = -81          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, Alternating, 32]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, Alternating, 32]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[16, 8, 17, 7], X[20, 18, 5, 17], 
 
>   X[18, 11, 19, 12], X[10, 19, 11, 20], X[14, 10, 15, 9], X[8, 16, 9, 15], 
 
>   X[2, 5, 3, 6], X[4, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10}, {9, -1, 3, -8, 7, -6, 5, -2, 10, -7, 8, -3, 4, -5, 
 
>    6, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(7/2)    2      6        9                       3/2       5/2      7/2
-q       + ---- - ---- + ------- - 11 Sqrt[q] + 12 q    - 12 q    + 9 q    - 
            5/2    3/2   Sqrt[q]
           q      q
 
       9/2      11/2    13/2
>   6 q    + 3 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12    -10   4     -4    -2      2    4    6      10      12      14
2 + q    + q    + -- + q   - q   - 3 q  + q  - q  + 2 q   - 2 q   + 3 q   + 
                   6
                  q
 
     16    18    20
>   q   - q   + q
In[8]:=
HOMFLYPT[Link[10, Alternating, 32]][a, z]
Out[8]=   
                            3                                    3      3
   1       2      1    a   a    z    4 z   2 z            3     z    2 z
-(----) + ---- - --- - - + -- - -- + --- - --- - 2 a z + a  z - -- + ---- - 
   5       3     a z   z   z     5    3     a                    5     3
  a  z    a  z                  a    a                          a     a
 
              5    5
         3   z    z
>   2 a z  + -- + --
              3   a
             a
In[9]:=
Kauffman[Link[10, Alternating, 32]][a, z]
Out[9]=   
                                              3
      -4   3     2    1      2      1    a   a    5 z   15 z   10 z
-2 - a   - -- - a  - ---- - ---- - --- + - + -- + --- + ---- + ---- - 3 a z - 
            2         5      3     a z   z   z     5      3     a
           a         a  z   a  z                  a      a
 
                       2    2       2      3       3       3       3
       3        2   2 z    z    11 z    2 z    11 z    33 z    21 z         3
>   3 a  z + 8 z  - ---- + -- + ----- + ---- - ----- - ----- - ----- + 2 a z  + 
                      6     4     2       7      5       3       a
                     a     a     a       a      a       a
 
                        4      4       4              5       5       5
       3  3      4   6 z    3 z    16 z       2  4   z    12 z    28 z
>   3 a  z  - 4 z  + ---- - ---- - ----- + 3 a  z  - -- + ----- + ----- + 
                       6      4      2                7     5       3
                      a      a      a                a     a       a
 
        5                              6      6       6                7
    19 z         5    3  5      6   3 z    6 z    14 z       2  6   5 z
>   ----- + 3 a z  - a  z  + 3 z  - ---- + ---- + ----- - 2 a  z  - ---- - 
      a                               6      4      2                 5
                                     a      a      a                 a
 
       7      7                      8      8    9    9
    9 z    7 z         7      8   4 z    7 z    z    z
>   ---- - ---- - 3 a z  - 3 z  - ---- - ---- - -- - --
      3     a                       4      2     3   a
     a                             a      a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       1       1       5       1     5    4        2        4
7 + 6 q  + ----- + ----- + ----- + ----- + ----- + - + ---- + 7 q  t + 5 q  t + 
            8  4    6  3    4  3    4  2    2  2   t    2
           q  t    q  t    q  t    q  t    q  t        q  t
 
       4  2      6  2      6  3      8  3      8  4      10  4    10  5
>   5 q  t  + 7 q  t  + 4 q  t  + 5 q  t  + 2 q  t  + 4 q   t  + q   t  + 
 
       12  5    14  6
>   2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10a32
L10a31
L10a31
L10a33
L10a33