PD Presentation: |
X6172 X12,4,13,3 X16,8,17,7 X20,18,5,17 X18,11,19,12 X10,19,11,20 X14,10,15,9 X8,16,9,15 X2536 X4,14,1,13 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, Alternating, 32]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, Alternating, 32]] |
Out[4]= | PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[16, 8, 17, 7], X[20, 18, 5, 17],
> X[18, 11, 19, 12], X[10, 19, 11, 20], X[14, 10, 15, 9], X[8, 16, 9, 15],
> X[2, 5, 3, 6], X[4, 14, 1, 13]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 2, -10}, {9, -1, 3, -8, 7, -6, 5, -2, 10, -7, 8, -3, 4, -5,
> 6, -4}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(7/2) 2 6 9 3/2 5/2 7/2
-q + ---- - ---- + ------- - 11 Sqrt[q] + 12 q - 12 q + 9 q -
5/2 3/2 Sqrt[q]
q q
9/2 11/2 13/2
> 6 q + 3 q - q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -12 -10 4 -4 -2 2 4 6 10 12 14
2 + q + q + -- + q - q - 3 q + q - q + 2 q - 2 q + 3 q +
6
q
16 18 20
> q - q + q |
In[8]:= | HOMFLYPT[Link[10, Alternating, 32]][a, z] |
Out[8]= | 3 3 3
1 2 1 a a z 4 z 2 z 3 z 2 z
-(----) + ---- - --- - - + -- - -- + --- - --- - 2 a z + a z - -- + ---- -
5 3 a z z z 5 3 a 5 3
a z a z a a a a
5 5
3 z z
> 2 a z + -- + --
3 a
a |
In[9]:= | Kauffman[Link[10, Alternating, 32]][a, z] |
Out[9]= | 3
-4 3 2 1 2 1 a a 5 z 15 z 10 z
-2 - a - -- - a - ---- - ---- - --- + - + -- + --- + ---- + ---- - 3 a z -
2 5 3 a z z z 5 3 a
a a z a z a a
2 2 2 3 3 3 3
3 2 2 z z 11 z 2 z 11 z 33 z 21 z 3
> 3 a z + 8 z - ---- + -- + ----- + ---- - ----- - ----- - ----- + 2 a z +
6 4 2 7 5 3 a
a a a a a a
4 4 4 5 5 5
3 3 4 6 z 3 z 16 z 2 4 z 12 z 28 z
> 3 a z - 4 z + ---- - ---- - ----- + 3 a z - -- + ----- + ----- +
6 4 2 7 5 3
a a a a a a
5 6 6 6 7
19 z 5 3 5 6 3 z 6 z 14 z 2 6 5 z
> ----- + 3 a z - a z + 3 z - ---- + ---- + ----- - 2 a z - ---- -
a 6 4 2 5
a a a a
7 7 8 8 9 9
9 z 7 z 7 8 4 z 7 z z z
> ---- - ---- - 3 a z - 3 z - ---- - ---- - -- - --
3 a 4 2 3 a
a a a a |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 1 1 1 5 1 5 4 2 4
7 + 6 q + ----- + ----- + ----- + ----- + ----- + - + ---- + 7 q t + 5 q t +
8 4 6 3 4 3 4 2 2 2 t 2
q t q t q t q t q t q t
4 2 6 2 6 3 8 3 8 4 10 4 10 5
> 5 q t + 7 q t + 4 q t + 5 q t + 2 q t + 4 q t + q t +
12 5 14 6
> 2 q t + q t |