© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10a164
L10a164
L10a166
L10a166
L10a165
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L10a165

Visit L10a165's page at Knotilus!

Acknowledgement

L10a165 as Morse Link
DrawMorseLink

PD Presentation: X6172 X2536 X18,11,19,12 X10,3,11,4 X4,9,1,10 X14,7,15,8 X8,13,5,14 X20,16,13,15 X16,20,17,19 X12,17,9,18

Gauss Code: {{1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -10}, {7, -6, 8, -9, 10, -3, 9, -8}}

Jones Polynomial: - q-19/2 + q-17/2 - 5q-15/2 + 5q-13/2 - 11q-11/2 + 10q-9/2 - 11q-7/2 + 8q-5/2 - 7q-3/2 + 4q-1/2 - q1/2

A2 (sl(3)) Invariant: q-32 + 4q-30 + 6q-28 + 8q-26 + 13q-24 + 12q-22 + 10q-20 + 12q-18 + 6q-16 + 5q-14 + 2q-12 + 3q-8 - 2q-6 + 2q-4 - 2 + q2

HOMFLY-PT Polynomial: - az3 + a3z3 + a3z5 - a5z-3 - 4a5z-1 - 6a5z - 4a5z3 + 3a7z-3 + 8a7z-1 + 6a7z - 3a9z-3 - 4a9z-1 + a11z-3

Kauffman Polynomial: az3 - az5 + 7a2z4 - 4a2z6 - 5a3z3 + 13a3z5 - 6a3z7 - 2a4z4 + 6a4z6 - 4a4z8 - a5z-3 + 4a5z-1 - 6a5z - a5z3 + 10a5z5 - 5a5z7 - a5z9 + 3a6z-2 - 8a6 + 6a6z2 - 9a6z4 + 9a6z6 - 5a6z8 - 3a7z-3 + 9a7z-1 - 14a7z + 13a7z3 - 6a7z5 - a7z9 + 6a8z-2 - 15a8 + 12a8z2 - 2a8z6 - a8z8 - 3a9z-3 + 9a9z-1 - 14a9z + 12a9z3 - 3a9z5 - a9z7 + 3a10z-2 - 8a10 + 6a10z2 - a10z6 - a11z-3 + 4a11z-1 - 6a11z + 4a11z3 - a11z5

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 2          1
j = 0         3 
j = -2        41 
j = -4       54  
j = -6      63   
j = -8     45    
j = -10    76     
j = -12   410      
j = -14  11       
j = -16  4        
j = -1811         
j = -201          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[10, Alternating, 165]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, Alternating, 165]]
Out[4]=   
PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[18, 11, 19, 12], X[10, 3, 11, 4], 
 
>   X[4, 9, 1, 10], X[14, 7, 15, 8], X[8, 13, 5, 14], X[20, 16, 13, 15], 
 
>   X[16, 20, 17, 19], X[12, 17, 9, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -10}, 
 
>   {7, -6, 8, -9, 10, -3, 9, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(19/2)    -(17/2)     5       5      11      10     11     8      7
-q        + q        - ----- + ----- - ----- + ---- - ---- + ---- - ---- + 
                        15/2    13/2    11/2    9/2    7/2    5/2    3/2
                       q       q       q       q      q      q      q
 
       4
>   ------- - Sqrt[q]
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -32    4     6     8    13    12    10    12     6     5     2    3
-2 + q    + --- + --- + --- + --- + --- + --- + --- + --- + --- + --- + -- - 
             30    28    26    24    22    20    18    16    14    12    8
            q     q     q     q     q     q     q     q     q     q     q
 
    2    2     2
>   -- + -- + q
     6    4
    q    q
In[8]:=
HOMFLYPT[Link[10, Alternating, 165]][a, z]
Out[8]=   
   5       7      9    11      5      7      9
  a     3 a    3 a    a     4 a    8 a    4 a       5        7        3
-(--) + ---- - ---- + --- - ---- + ---- - ---- - 6 a  z + 6 a  z - a z  + 
   3      3      3     3     z      z      z
  z      z      z     z
 
     3  3      5  3    3  5
>   a  z  - 4 a  z  + a  z
In[9]:=
Kauffman[Link[10, Alternating, 165]][a, z]
Out[9]=   
                         5      7      9    11      6      8      10      5
    6       8      10   a    3 a    3 a    a     3 a    6 a    3 a     4 a
-8 a  - 15 a  - 8 a   - -- - ---- - ---- - --- + ---- + ---- + ----- + ---- + 
                         3     3      3     3      2      2      2      z
                        z     z      z     z      z      z      z
 
       7      9      11
    9 a    9 a    4 a        5         7         9        11        6  2
>   ---- + ---- + ----- - 6 a  z - 14 a  z - 14 a  z - 6 a   z + 6 a  z  + 
     z      z       z
 
        8  2      10  2      3      3  3    5  3       7  3       9  3
>   12 a  z  + 6 a   z  + a z  - 5 a  z  - a  z  + 13 a  z  + 12 a  z  + 
 
       11  3      2  4      4  4      6  4      5       3  5       5  5
>   4 a   z  + 7 a  z  - 2 a  z  - 9 a  z  - a z  + 13 a  z  + 10 a  z  - 
 
       7  5      9  5    11  5      2  6      4  6      6  6      8  6
>   6 a  z  - 3 a  z  - a   z  - 4 a  z  + 6 a  z  + 9 a  z  - 2 a  z  - 
 
     10  6      3  7      5  7    9  7      4  8      6  8    8  8    5  9
>   a   z  - 6 a  z  - 5 a  z  - a  z  - 4 a  z  - 5 a  z  - a  z  - a  z  - 
 
     7  9
>   a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
4    4      1        1        1        4        1        1        4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    20  8    18  8    18  7    16  6    14  6    14  5    12  5
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      10       7        6        4       5       6      3      5           t
>   ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + 3 t + -- + 
     12  4    10  4    10  3    8  3    8  2    6  2    6      4            2
    q   t    q   t    q   t    q  t    q  t    q  t    q  t   q  t         q
 
     2  2
>   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10a165
L10a164
L10a164
L10a166
L10a166