© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10a159
L10a159
L10a161
L10a161
L10a160
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L10a160

Visit L10a160's page at Knotilus!

Acknowledgement

L10a160 as Morse Link
DrawMorseLink

PD Presentation: X8192 X14,4,15,3 X20,12,13,11 X18,10,19,9 X10,14,11,13 X12,20,7,19 X16,6,17,5 X2738 X4,16,5,15 X6,18,1,17

Gauss Code: {{1, -8, 2, -9, 7, -10}, {8, -1, 4, -5, 3, -6}, {5, -2, 9, -7, 10, -4, 6, -3}}

Jones Polynomial: 1 - 2q + 4q2 - 5q3 + 8q4 - 7q5 + 8q6 - 6q7 + 4q8 - 2q9 + q10

A2 (sl(3)) Invariant: 1 + q6 + 4q10 + 2q12 + 4q14 + 4q16 + 2q18 + 4q20 + q22 + 2q24 + q26 + q30

HOMFLY-PT Polynomial: a-8z-2 + 2a-8 + 3a-8z2 + a-8z4 - 2a-6z-2 - 6a-6 - 6a-6z2 - 4a-6z4 - a-6z6 + a-4z-2 + 3a-4 - 3a-4z4 - a-4z6 + a-2 + 3a-2z2 + a-2z4

Kauffman Polynomial: - 2a-12z2 + a-12z4 - 3a-11z3 + 2a-11z5 - a-10 + 5a-10z2 - 6a-10z4 + 3a-10z6 + 6a-9z3 - 6a-9z5 + 3a-9z7 - a-8z-2 + 5a-8 - 14a-8z2 + 19a-8z4 - 10a-8z6 + 3a-8z8 + 2a-7z-1 - 9a-7z + 16a-7z3 - 9a-7z5 + a-7z7 + a-7z9 - 2a-6z-2 + 11a-6 - 31a-6z2 + 35a-6z4 - 20a-6z6 + 5a-6z8 + 2a-5z-1 - 9a-5z + 12a-5z3 - 8a-5z5 + a-5z9 - a-4z-2 + 5a-4 - 6a-4z2 + 5a-4z4 - 6a-4z6 + 2a-4z8 + 5a-3z3 - 7a-3z5 + 2a-3z7 - a-2 + 4a-2z2 - 4a-2z4 + a-2z6

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 21          1
j = 19         21
j = 17        2  
j = 15       42  
j = 13      42   
j = 11     34    
j = 9    54     
j = 7   25      
j = 5  23       
j = 3 13        
j = 1 1         
j = -11          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[10, Alternating, 160]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, Alternating, 160]]
Out[4]=   
PD[X[8, 1, 9, 2], X[14, 4, 15, 3], X[20, 12, 13, 11], X[18, 10, 19, 9], 
 
>   X[10, 14, 11, 13], X[12, 20, 7, 19], X[16, 6, 17, 5], X[2, 7, 3, 8], 
 
>   X[4, 16, 5, 15], X[6, 18, 1, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9, 7, -10}, {8, -1, 4, -5, 3, -6}, 
 
>   {5, -2, 9, -7, 10, -4, 6, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
             2      3      4      5      6      7      8      9    10
1 - 2 q + 4 q  - 5 q  + 8 q  - 7 q  + 8 q  - 6 q  + 4 q  - 2 q  + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     6      10      12      14      16      18      20    22      24    26    30
1 + q  + 4 q   + 2 q   + 4 q   + 4 q   + 2 q   + 4 q   + q   + 2 q   + q   + q
In[8]:=
HOMFLYPT[Link[10, Alternating, 160]][a, z]
Out[8]=   
                                                2      2      2    4      4
2    6    3     -2     1       2       1     3 z    6 z    3 z    z    4 z
-- - -- + -- + a   + ----- - ----- + ----- + ---- - ---- + ---- + -- - ---- - 
 8    6    4          8  2    6  2    4  2     8      6      2     8     6
a    a    a          a  z    a  z    a  z     a      a      a     a     a
 
       4    4    6    6
    3 z    z    z    z
>   ---- + -- - -- - --
      4     2    6    4
     a     a    a    a
In[9]:=
Kauffman[Link[10, Alternating, 160]][a, z]
Out[9]=   
  -10   5    11   5     -2     1       2       1      2      2     9 z   9 z
-a    + -- + -- + -- - a   - ----- - ----- - ----- + ---- + ---- - --- - --- - 
         8    6    4          8  2    6  2    4  2    7      5      7     5
        a    a    a          a  z    a  z    a  z    a  z   a  z   a     a
 
       2      2       2       2      2      2      3      3       3       3
    2 z    5 z    14 z    31 z    6 z    4 z    3 z    6 z    16 z    12 z
>   ---- + ---- - ----- - ----- - ---- + ---- - ---- + ---- + ----- + ----- + 
     12     10      8       6       4      2     11      9      7       5
    a      a       a       a       a      a     a       a      a       a
 
       3    4       4       4       4      4      4      5      5      5
    5 z    z     6 z    19 z    35 z    5 z    4 z    2 z    6 z    9 z
>   ---- + --- - ---- + ----- + ----- + ---- - ---- + ---- - ---- - ---- - 
      3     12    10      8       6       4      2     11      9      7
     a     a     a       a       a       a      a     a       a      a
 
       5      5      6       6       6      6    6      7    7      7      8
    8 z    7 z    3 z    10 z    20 z    6 z    z    3 z    z    2 z    3 z
>   ---- - ---- + ---- - ----- - ----- - ---- + -- + ---- + -- + ---- + ---- + 
      5      3     10      8       6       4     2     9     7     3      8
     a      a     a       a       a       a     a     a     a     a      a
 
       8      8    9    9
    5 z    2 z    z    z
>   ---- + ---- + -- + --
      6      4     7    5
     a      a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
                          3
   3      5    1     q   q       5        7        7  2      9  2      9  3
3 q  + 2 q  + ---- + - + -- + 3 q  t + 2 q  t + 5 q  t  + 5 q  t  + 4 q  t  + 
                 2   t   t
              q t
 
       11  3      11  4      13  4      13  5      15  5      15  6
>   3 q   t  + 4 q   t  + 4 q   t  + 2 q   t  + 4 q   t  + 2 q   t  + 
 
       17  6      19  7    19  8    21  8
>   2 q   t  + 2 q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10a160
L10a159
L10a159
L10a161
L10a161