© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10a151
L10a151
L10a153
L10a153
L10a152
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L10a152

Visit L10a152's page at Knotilus!

Acknowledgement

L10a152 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X20,14,15,13 X16,8,17,7 X8,16,9,15 X18,12,19,11 X12,20,13,19 X14,18,5,17 X2536 X4,9,1,10

Gauss Code: {{1, -9, 2, -10}, {5, -4, 8, -6, 7, -3}, {9, -1, 4, -5, 10, -2, 6, -7, 3, -8}}

Jones Polynomial: q-3 - 2q-2 + 6q-1 - 8 + 11q - 12q2 + 12q3 - 9q4 + 7q5 - 3q6 + q7

A2 (sl(3)) Invariant: q-10 + q-8 + 3q-4 + 2 + 4q2 + 5q6 + q8 + 4q10 + 3q12 + 3q16 - q18 + q22

HOMFLY-PT Polynomial: a-6 + a-6z2 + a-4z-2 + a-4 - 3a-4z2 - 2a-4z4 - 2a-2z-2 - 4a-2 - a-2z2 + 2a-2z4 + a-2z6 + z-2 - 4z2 - 2z4 + 2a2 + a2z2

Kauffman Polynomial: - a-8z2 + a-8z4 - 2a-7z3 + 3a-7z5 - 3a-6 + 8a-6z2 - 9a-6z4 + 6a-6z6 + a-5z + a-5z3 - 6a-5z5 + 6a-5z7 - a-4z-2 + 2a-4 + 3a-4z2 - 7a-4z4 + 4a-4z8 + 2a-3z-1 - 10a-3z + 24a-3z3 - 27a-3z5 + 10a-3z7 + a-3z9 - 2a-2z-2 + 10a-2 - 18a-2z2 + 15a-2z4 - 15a-2z6 + 7a-2z8 + 2a-1z-1 - 10a-1z + 23a-1z3 - 23a-1z5 + 6a-1z7 + a-1z9 - z-2 + 4 - 7z2 + 8z4 - 8z6 + 3z8 + az + 2az3 - 5az5 + 2az7 - 2a2 + 5a2z2 - 4a2z4 + a2z6

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15          1
j = 13         31
j = 11        4  
j = 9       53  
j = 7      74   
j = 5     66    
j = 3    56     
j = 1   47      
j = -1  24       
j = -3  4        
j = -512         
j = -71          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[10, Alternating, 152]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, Alternating, 152]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[20, 14, 15, 13], X[16, 8, 17, 7], 
 
>   X[8, 16, 9, 15], X[18, 12, 19, 11], X[12, 20, 13, 19], X[14, 18, 5, 17], 
 
>   X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10}, {5, -4, 8, -6, 7, -3}, 
 
>   {9, -1, 4, -5, 10, -2, 6, -7, 3, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
      -3   2    6              2       3      4      5      6    7
-8 + q   - -- + - + 11 q - 12 q  + 12 q  - 9 q  + 7 q  - 3 q  + q
            2   q
           q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -10    -8   3       2      6    8      10      12      16    18    22
2 + q    + q   + -- + 4 q  + 5 q  + q  + 4 q   + 3 q   + 3 q   - q   + q
                  4
                 q
In[8]:=
HOMFLYPT[Link[10, Alternating, 152]][a, z]
Out[8]=   
                                                      2      2    2
 -6    -4   4       2    -2     1       2        2   z    3 z    z     2  2
a   + a   - -- + 2 a  + z   + ----- - ----- - 4 z  + -- - ---- - -- + a  z  - 
             2                 4  2    2  2           6     4     2
            a                 a  z    a  z           a     a     a
 
              4      4    6
       4   2 z    2 z    z
>   2 z  - ---- + ---- + --
             4      2     2
            a      a     a
In[9]:=
Kauffman[Link[10, Alternating, 152]][a, z]
Out[9]=   
    3    2    10      2    -2     1       2      2      2    z    10 z   10 z
4 - -- + -- + -- - 2 a  - z   - ----- - ----- + ---- + --- + -- - ---- - ---- + 
     6    4    2                 4  2    2  2    3     a z    5     3     a
    a    a    a                 a  z    a  z    a  z         a     a
 
                  2      2      2       2                3    3       3
             2   z    8 z    3 z    18 z       2  2   2 z    z    24 z
>   a z - 7 z  - -- + ---- + ---- - ----- + 5 a  z  - ---- + -- + ----- + 
                  8     6      4      2                 7     5     3
                 a     a      a      a                 a     a     a
 
        3                    4      4      4       4                5      5
    23 z         3      4   z    9 z    7 z    15 z       2  4   3 z    6 z
>   ----- + 2 a z  + 8 z  + -- - ---- - ---- + ----- - 4 a  z  + ---- - ---- - 
      a                      8     6      4      2                 7      5
                            a     a      a      a                 a      a
 
        5       5                      6       6              7       7
    27 z    23 z         5      6   6 z    15 z     2  6   6 z    10 z
>   ----- - ----- - 5 a z  - 8 z  + ---- - ----- + a  z  + ---- + ----- + 
      3       a                       6      2               5      3
     a                               a      a               a      a
 
       7                      8      8    9    9
    6 z         7      8   4 z    7 z    z    z
>   ---- + 2 a z  + 3 z  + ---- + ---- + -- + --
     a                       4      2     3   a
                            a      a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
         3     1       1       2       4      2      4    4 q      3
7 q + 5 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 6 q  t + 
              7  4    5  4    5  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2      7  2      7  3      9  3      9  4      11  4
>   6 q  t + 6 q  t  + 7 q  t  + 4 q  t  + 5 q  t  + 3 q  t  + 4 q   t  + 
 
       13  5    13  6    15  6
>   3 q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10a152
L10a151
L10a151
L10a153
L10a153