PD Presentation: |
X12,1,13,2 X20,9,11,10 X14,3,15,4 X16,5,17,6 X18,7,19,8 X4,15,5,16 X6,17,7,18 X8,19,9,20 X2,11,3,12 X10,13,1,14 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[10, Alternating, 114]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, Alternating, 114]] |
Out[4]= | PD[X[12, 1, 13, 2], X[20, 9, 11, 10], X[14, 3, 15, 4], X[16, 5, 17, 6],
> X[18, 7, 19, 8], X[4, 15, 5, 16], X[6, 17, 7, 18], X[8, 19, 9, 20],
> X[2, 11, 3, 12], X[10, 13, 1, 14]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 3, -6, 4, -7, 5, -8, 2, -10},
> {9, -1, 10, -3, 6, -4, 7, -5, 8, -2}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(27/2) -(25/2) 2 3 3 3 3 2 2
-q + q - ----- + ----- - ----- + ----- - ----- + ----- - ----- +
23/2 21/2 19/2 17/2 15/2 13/2 11/2
q q q q q q q
-(9/2) -(7/2)
> q - q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -40 -38 -36 -34 -28 -26 -24 -22 -20 -16 -12
q + q + q + q - q + q + q + q + q + q + q |
In[8]:= | HOMFLYPT[Link[10, Alternating, 114]][a, z] |
Out[8]= | 9 11
a a 7 9 11 7 3 9 3 11 3
-(--) + --- - 4 a z - 7 a z + 6 a z - 10 a z - 11 a z + 5 a z -
z z
7 5 9 5 11 5 7 7 9 7
> 6 a z - 6 a z + a z - a z - a z |
In[9]:= | Kauffman[Link[10, Alternating, 114]][a, z] |
Out[9]= | 9 11
10 a a 7 9 11 13 15 17 8 2
-a + -- + --- + 4 a z - 8 a z - 8 a z + a z - a z + 2 a z + a z +
z z
10 2 12 2 14 2 16 2 7 3 9 3 11 3
> 9 a z + 4 a z - 3 a z + a z - 10 a z + 15 a z + 19 a z -
13 3 15 3 17 3 8 4 10 4 12 4 14 4
> 4 a z + a z - a z - 6 a z - 15 a z - 6 a z + 2 a z -
16 4 7 5 9 5 11 5 13 5 15 5 8 6
> a z + 6 a z - 13 a z - 15 a z + 3 a z - a z + 5 a z +
10 6 12 6 14 6 7 7 9 7 11 7 13 7
> 10 a z + 4 a z - a z - a z + 6 a z + 6 a z - a z -
8 8 10 8 12 8 9 9 11 9
> a z - 2 a z - a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -8 -6 1 1 1 1 1 2 1
q + q + ------- + ------- + ------ + ------ + ------ + ------ + ------ +
28 10 26 10 26 9 24 8 22 8 22 7 20 7
q t q t q t q t q t q t q t
1 2 2 1 1 2 1 1
> ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
20 6 18 6 18 5 16 5 16 4 14 4 14 3 12 3
q t q t q t q t q t q t q t q t
1 1 1
> ------ + ------ + ----
12 2 10 2 8
q t q t q t |