© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10a108
L10a108
L10a110
L10a110
L10a109
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10a109

Visit L10a109's page at Knotilus!

Acknowledgement

L10a109 as Morse Link
DrawMorseLink

PD Presentation: X12,1,13,2 X16,8,17,7 X10,5,1,6 X6374 X4,9,5,10 X18,14,19,13 X20,16,11,15 X14,20,15,19 X2,11,3,12 X8,18,9,17

Gauss Code: {{1, -9, 4, -5, 3, -4, 2, -10, 5, -3}, {9, -1, 6, -8, 7, -2, 10, -6, 8, -7}}

Jones Polynomial: q-9/2 - 2q-7/2 + 5q-5/2 - 9q-3/2 + 10q-1/2 - 13q1/2 + 11q3/2 - 10q5/2 + 7q7/2 - 3q9/2 + q11/2

A2 (sl(3)) Invariant: - q-14 - q-12 - q-10 - 3q-8 + 2q-6 + q-4 + 4q-2 + 7 + 2q2 + 5q4 - 2q6 - q10 - 3q12 + q14 - q16

HOMFLY-PT Polynomial: 2a-3z-1 + 4a-3z + 3a-3z3 + a-3z5 - 7a-1z-1 - 13a-1z - 11a-1z3 - 5a-1z5 - a-1z7 + 7az-1 + 12az + 8az3 + 2az5 - 2a3z-1 - 3a3z - a3z3

Kauffman Polynomial: a-6z2 - a-6z4 + 2a-5z3 - 3a-5z5 + 2a-4 - 6a-4z2 + 8a-4z4 - 6a-4z6 - 2a-3z-1 + 6a-3z - 10a-3z3 + 11a-3z5 - 7a-3z7 + 8a-2 - 20a-2z2 + 17a-2z4 - 2a-2z6 - 4a-2z8 - 7a-1z-1 + 18a-1z - 27a-1z3 + 27a-1z5 - 10a-1z7 - a-1z9 + 13 - 25z2 + 15z4 + 6z6 - 6z8 - 7az-1 + 16az - 21az3 + 19az5 - 5az7 - az9 + 8a2 - 17a2z2 + 11a2z4 + a2z6 - 2a2z8 - 2a3z-1 + 4a3z - 6a3z3 + 6a3z5 - 2a3z7 + 2a4 - 5a4z2 + 4a4z4 - a4z6

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 12          1
j = 10         2 
j = 8        51 
j = 6       52  
j = 4      65   
j = 2     75    
j = 0    58     
j = -2   45      
j = -4  15       
j = -6 14        
j = -8 1         
j = -101          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, Alternating, 109]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, Alternating, 109]]
Out[4]=   
PD[X[12, 1, 13, 2], X[16, 8, 17, 7], X[10, 5, 1, 6], X[6, 3, 7, 4], 
 
>   X[4, 9, 5, 10], X[18, 14, 19, 13], X[20, 16, 11, 15], X[14, 20, 15, 19], 
 
>   X[2, 11, 3, 12], X[8, 18, 9, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 4, -5, 3, -4, 2, -10, 5, -3}, 
 
>   {9, -1, 6, -8, 7, -2, 10, -6, 8, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(9/2)    2      5      9       10                       3/2       5/2
q       - ---- + ---- - ---- + ------- - 13 Sqrt[q] + 11 q    - 10 q    + 
           7/2    5/2    3/2   Sqrt[q]
          q      q      q
 
       7/2      9/2    11/2
>   7 q    - 3 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -14    -12    -10   3    2     -4   4       2      4      6    10
7 - q    - q    - q    - -- + -- + q   + -- + 2 q  + 5 q  - 2 q  - q   - 
                          8    6          2
                         q    q          q
 
       12    14    16
>   3 q   + q   - q
In[8]:=
HOMFLYPT[Link[10, Alternating, 109]][a, z]
Out[8]=   
                      3                                     3       3
 2      7    7 a   2 a    4 z   13 z               3     3 z    11 z
---- - --- + --- - ---- + --- - ---- + 12 a z - 3 a  z + ---- - ----- + 
 3     a z    z     z      3     a                         3      a
a  z                      a                               a
 
                      5      5             7
         3    3  3   z    5 z         5   z
>   8 a z  - a  z  + -- - ---- + 2 a z  - --
                      3    a              a
                     a
In[9]:=
Kauffman[Link[10, Alternating, 109]][a, z]
Out[9]=   
                                                   3
     2    8       2      4    2      7    7 a   2 a    6 z   18 z
13 + -- + -- + 8 a  + 2 a  - ---- - --- - --- - ---- + --- + ---- + 16 a z + 
      4    2                  3     a z    z     z      3     a
     a    a                  a  z                      a
 
                      2      2       2                           3       3
       3         2   z    6 z    20 z        2  2      4  2   2 z    10 z
>   4 a  z - 25 z  + -- - ---- - ----- - 17 a  z  - 5 a  z  + ---- - ----- - 
                      6     4      2                            5      3
                     a     a      a                            a      a
 
        3                                4      4       4
    27 z          3      3  3       4   z    8 z    17 z        2  4
>   ----- - 21 a z  - 6 a  z  + 15 z  - -- + ---- + ----- + 11 a  z  + 
      a                                  6     4      2
                                        a     a      a
 
                 5       5       5                                 6      6
       4  4   3 z    11 z    27 z          5      3  5      6   6 z    2 z
>   4 a  z  - ---- + ----- + ----- + 19 a z  + 6 a  z  + 6 z  - ---- - ---- + 
                5      3       a                                  4      2
               a      a                                          a      a
 
                       7       7                                8
     2  6    4  6   7 z    10 z         7      3  7      8   4 z       2  8
>   a  z  - a  z  - ---- - ----- - 5 a z  - 2 a  z  - 6 z  - ---- - 2 a  z  - 
                      3      a                                 2
                     a                                        a
 
     9
    z       9
>   -- - a z
    a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1        1       1       4       1       5       4     5    5
8 + 7 q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - + ---- + 
            10  5    8  4    6  4    6  3    4  3    4  2    2  2   t    2
           q   t    q  t    q  t    q  t    q  t    q  t    q  t        q  t
 
       2        4        4  2      6  2      6  3      8  3    8  4
>   5 q  t + 6 q  t + 5 q  t  + 5 q  t  + 2 q  t  + 5 q  t  + q  t  + 
 
       10  4    12  5
>   2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10a109
L10a108
L10a108
L10a110
L10a110