Next: 3. The Classification
Up: 3. The case of
Previous: 3.3 Constancy conditions or
Subsections
3.4 Integrability conditions or
Figure 12:
Undoing a Bundle Left Twist one crossing at a time.
![\begin{figure}\begin{displaymath}
\if ny
\smash{\makebox[0pt]{\hspace{-0.5in}
...
...ws/UndoingBLT.tex }
\hspace{-1.9mm}
\end{array} \end{displaymath}
\end{figure}](img129.gif) |
Figure 13:
The Total Twist Relation (TTR).
![\begin{figure}\begin{displaymath}
\if ny
\smash{\makebox[0pt]{\hspace{-0.5in}
...
...ws/TotalTwist.tex }
\hspace{-1.9mm}
\end{array} \end{displaymath}
\end{figure}](img130.gif) |
Figure 14:
The Total Twist Relation (TTR).
![\begin{figure}\begin{displaymath}
\if ny
\smash{\makebox[0pt]{\hspace{-0.5in}
...
...put draws/TTR.tex }
\hspace{-1.9mm}
\end{array} \end{displaymath}
\end{figure}](img131.gif) |
Figure 15:
The Monster
![\begin{figure}\begin{displaymath}
\if ny
\smash{\makebox[0pt]{\hspace{-0.5in}
...
...draws/Monster.tex }
\hspace{-1.9mm}
\end{array} \end{displaymath}
\end{figure}](img132.gif) |
Figure 16:
Lassoing a Borromean link.
![\begin{figure}\begin{displaymath}
\if ny
\smash{\makebox[0pt]{\hspace{-0.5in}
...
...oingBorromean.tex }
\hspace{-1.9mm}
\end{array} \end{displaymath}
\end{figure}](img133.gif) |
(The last equality holds because in the two error terms,
YrabYrgb and Yrgb, the component p is unknotted).
Now reduce the component r using the total twist relation. Only the first
term is affected, and 3 of the 6 terms that are produced from its
reduction cancel against the 3 remaining terms of the above equation. The
result is:
The last term here drops out because in it the component r is unknotted,
and so the end result is
.
In graphical terms,
this is precisely the graph I! Cyclically permuting the roles of r,
g, and b, we find that we have proven the IHX relation.
Next: 3. The Classification
Up: 3. The case of
Previous: 3.3 Constancy conditions or
Dror Bar-Natan
2000-03-19