next up previous contents
Next: 3. The Classification Up: 3. The case of Previous: 3.3 Constancy conditions or

Subsections

   
3.4 Integrability conditions or $\ker\delta$

3.4.1 +1 and -1 surgeries are opposites

3.4.2 A total twist is a composition of many little ones


 
Figure 12: Undoing a Bundle Left Twist one crossing at a time.
\begin{figure}\begin{displaymath}
\if ny
\smash{\makebox[0pt]{\hspace{-0.5in}
...
...ws/UndoingBLT.tex }
\hspace{-1.9mm}
\end{array} \end{displaymath}
\end{figure}


 
Figure 13: The Total Twist Relation (TTR).
\begin{figure}\begin{displaymath}
\if ny
\smash{\makebox[0pt]{\hspace{-0.5in}
...
...ws/TotalTwist.tex }
\hspace{-1.9mm}
\end{array} \end{displaymath}
\end{figure}


 
Figure 14: The Total Twist Relation (TTR).
\begin{figure}\begin{displaymath}
\if ny
\smash{\makebox[0pt]{\hspace{-0.5in}
...
...put draws/TTR.tex }
\hspace{-1.9mm}
\end{array} \end{displaymath}
\end{figure}

3.4.3 The two ways of building an interchange

3.4.4 Lassoing a Borromean link and the IHX relation


  
Figure 15: The Monster
\begin{figure}\begin{displaymath}
\if ny
\smash{\makebox[0pt]{\hspace{-0.5in}
...
...draws/Monster.tex }
\hspace{-1.9mm}
\end{array} \end{displaymath}
\end{figure}


 
Figure 16: Lassoing a Borromean link.
\begin{figure}\begin{displaymath}
\if ny
\smash{\makebox[0pt]{\hspace{-0.5in}
...
...oingBorromean.tex }
\hspace{-1.9mm}
\end{array} \end{displaymath}
\end{figure}


\begin{displaymath}{\tilde{Y}_{rab}}{Y_{rgb}}({Y_{rgp}}{Y_{pyb}}-{Y_{rgp}}-{Y_{p...
...tilde{Y}_{rab}}{Y_{rgb}}({Y_{rgp}}{\tilde{Y}_{pyb}}-{Y_{pyb}})
\end{displaymath}


\begin{displaymath}= {Y_{rab}}{Y_{rgb}}{Y_{rgp}}{\tilde{Y}_{pyb}} - {Y_{rab}}{Y_...
...yb}}
- {Y_{rgb}}{Y_{rgp}}{\tilde{Y}_{pyb}}+{Y_{rgb}}{Y_{pyb}}
\end{displaymath}


\begin{displaymath}= {Y_{rab}}{Y_{rgb}}{Y_{rgp}}{\tilde{Y}_{pyb}} - {Y_{rab}}{Y_...
...{Y_{rgb}}{Y_{rgp}}{\tilde{Y}_{pyb}}+{Y_{rgb}}{\tilde{Y}_{pyb}}
\end{displaymath}

(The last equality holds because in the two error terms, YrabYrgb and Yrgb, the component p is unknotted). Now reduce the component r using the total twist relation. Only the first term is affected, and 3 of the 6 terms that are produced from its reduction cancel against the 3 remaining terms of the above equation. The result is:

\begin{displaymath}= ({Y_{rab}}{Y_{rgp}}-{Y_{rab}}-{Y_{rgp}}){\tilde{Y}_{pyb}}
...
...Y}_{rab}}{\tilde{Y}_{rgp}}{\tilde{Y}_{pyb}}-{\tilde{Y}_{pyb}}.
\end{displaymath}

The last term here drops out because in it the component r is unknotted, and so the end result is ${\tilde{Y}_{rab}}{\tilde{Y}_{rgp}}{\tilde{Y}_{pyb}}$. In graphical terms, this is precisely the graph I! Cyclically permuting the roles of r, g, and b, we find that we have proven the IHX relation.


next up previous contents
Next: 3. The Classification Up: 3. The case of Previous: 3.3 Constancy conditions or
Dror Bar-Natan
2000-03-19