Question Corner and Discussion Area
I've seen the proof for the n=4 case of Fermat's Last TheoremThe proof that there are no integers X, Y, and Z which satisfy the equationIs the the n=3 case similarly easy to prove? Was the proof known by Fermat?
If x, y, and z are integers such that and
x and y are relatively prime then there exist integers a and b such
that
and
.
The proof of this lemma hinges on some material which is typically covered in an advanced undergraduate or an introductory graduate abstract algebra course. Those who are interested in more reading on the subject and who have enough background in mathematics can find this lemma (together with hints) as exercise 4.6 in Daniel Flath's Introduction To Number Theory (see also exercises 7.6 and 7.8 for more information on cases n=3 and n=4 of Fermat's Last Theorem).
Go backward to The n=4 Case of Fermat's Last Theorem
Go up to Question Corner Index
Go forward to A Question from the IMO
Switch to text-only version (no graphics)
Access printed version in PostScript format (requires PostScript printer)
Go to University of Toronto Mathematics Network
Home Page