Preprints

  1. Shahriar Aslani and Ke Zhang.
    Bumpy metric theorem for co-rank 1 sub-Riemannian and reversible sub-Finsler metrics.
    arxiv

Books

  1. Vadim Kaloshin and Ke Zhang.
    Arnold diffusion for smooth systems of two-and-a-half degrees of freedom.
    Annals of Mathematics Studies, Princton University Press , in press.

Papers

  1. Delshams, A., Zhang, K.
    Generic Global Diffusion for Analytic a Priori Unstable Systems.
    Commun. Math. Phys. 406, 146 (2025) doi, arxiv

  2. Qun Wang and Ke Zhang.
    Gevrey regularity for the formally linearizable billiard of Treschev
    Nonlinearity , 38 035030. arxiv

  3. Kaloshin, Vadim, Comlan Edmond Koudjinan, and Ke Zhang.
    Birkhoff Conjecture for Nearly Centrally Symmetric Domains.
    Geom. Funct. Anal. , 34, 1973–2007 (2024). doi arxiv

  4. Konstantin Khanin, Ke Zhang, and Lei Zhang.
    Uniform exponential contraction for viscous Hamilton-Jacobi equations.
    Calculus of Variations and Partial Differential Equations , 62, 82 (2023). 35pp. DOI, arxiv

  5. Jianyu Chen, Huyi Hu, Yakov Pesin, Ke Zhang.
    The essential coexistence phenomenon in Hamiltonian dynamics.
    Ergodic Theory and Dynamical Systems , accepted (2020), 22pp, arXiv:1901.07713.

  6. Renato Iturriaga, Konstantin Khanin and Ke Zhang.
    Exponential convergence of solutions for random Hamilton-Jacobi equations.
    Stochastics and Partial Differential Equations: Analysis and Computations , published online (2019), 36pp, DOI, arXiv.

  7. Alex Blumenthal, Jacopo De Simoi and Ke Zhang.
    Diffusion limit for a slow-fast standard map.
    Communications in Mathematical Physics , published online (2019), 22pp. DOI, arXiv.

  8. Yakov Pesin, Samuel Senti and Ke Zhang.
    Thermodynamics of the Katok map.
    Ergodic Theory and Dynamical Systems , March 2019, Volume 39, Issue 3, pp 764-794. DOI, arxiv.

  9. Vadim Kaloshin and Ke Zhang.
    Density of convex billiards with rational caustics.
    Nonlinearity , 31 (2018), No 11, 5214 - 5234. Journal, arXiv.

  10. Vadim Kaloshin and Ke Zhang.
    Dynamics of the dominant Hamiltonian.
    Bulletin de la SMF (Bulletin of the French Mathematical Society), 146(3), 2018, 517-574. Journal, arxiv

  11. Ke Zhang.
    On tangent cones of Aubry sets.
    Annales de la Faculté des Sciences de Toulouse , accepted (2017), 12pp. arxiv

  12. Konstantin Khanin and Ke Zhang.
    Hyperbolic minimal orbit for randomly kicked Hamilton-Jacobi equations.
    Communications in Mathematical Physics , October 2017, Volume 355, Issue 2, pp 803–837. DOI, arxiv

  13. Jianlu Zhang and Ke Zhang.
    Improved stability for analytic quasi-convex nearly integrable systems and optimal speed of Arnold diffusion.
    Nonlinearity , 30 (2017), No. 7. 2918. DOI, arxiv

  14. Vadim Kaloshin, Patrick Bernard and Ke Zhang.
    Arnold diffusion in arbitrary degrees of freedom and 3-dimensional normally hyperbolic invariant cylinders.
    Acta Mathematica (2016) 217: 1. Journal, arxiv.

  15. Yakov Pesin, Samuel Senti and Ke Zhang.
    Thermodynamics of towers of hyperbolic type.
    Trans. Amer. Math. Soc. , 368 (2016), 8519-8552. Journal, arxiv.

  16. Kaloshin and Ke Zhang,
    Arnold diffusion for smooth convex systems of two and a half degrees of freedom.
    Nonlinearity , 28 (2015) no. 8, 2699. Journal

  17. Ke Zhang.
    Speed of Arnold diffusion for analytic Hamiltonian systems.
    Inventiones Mathematicae , 186:255-290, 2011. Journal.

  18. Vadim Kaloshin, Yong Zheng and Ke Zhang.
    Almost dense orbit on energy surface.
    Proceedings of XVITH International Congress on Mathematical Physics . Edited by Pavel Exner, published by World Scientific Publishing Co, 314-322.

  19. Yakov Pesin, Samuel Senti and Ke Zhang.
    Lifting measures to inducing Schemes.
    Ergodic Theory Dynamical Systems , 28 (2008), no. 2, 553–574. DOI, arxiv

  20. Yakov Pesin and Ke Zhang.
    Thermodynamics of inducing schemes and liftability of measures.
    Partially hyperbolic dynamics, laminations, and Teichmüller flow , 289–305, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007. PDF.

  21. Yakov Pesin and Ke Zhang.
    Phase transitions for uniformly expanding maps.
    J. Stat. Phys. , 122(6):1095–1110, 2006. Journal

Others

Ph.D. Thesis.
Thermodynamical formalism for maps with inducing schemes.
The Pennsylvania State University, 2007. PDF.