Dror Bar-Natan: Publications:

A Rational Surgery Formula for the LMO Invariant

posted May 15, 2000, last updated Aug 12, 2004

joint with Ruth Lawrence

Israel Journal of Mathematics 140 (2004) 29-60.

An open Hopf chain

We write a formula for the LMO invariant of a rational homology sphere presented as a rational surgery on a link in S3. Our main tool is a careful use of the Århus integral and the (now proven) "Wheels" and "Wheeling" conjectures of B-N, Garoufalidis, Rozansky and Thurston. As steps, side benefits and asides we give explicit formulas for the values of the Kontsevich integral on the Hopf link and on Hopf chains, and for the LMO invariant of lens spaces and Seifert fibered spaces. We find that the LMO invariant does not separate lens spaces, is far from separating general Seifert fibered spaces, but does separate Seifert fibered spaces which are integral homology spheres.

The paper: RationalSurgery.ps, RationalSurgery.pdf.
Source files: RationalSurgery.tar.gz.
See also arXiv:math.GT/0007045.


Mathematical Landscape by Zarko D. Mijajlovich
A mathematical landscape by Zarko D. Mijajlovich