- (1) Prove that if (M^n, g) is a compact manifold without a boundary then all geodesics are infinitely extendable i.e, if $\gamma: (-\epsilon, \epsilon) \to M$ is a geodesic then it can be extended to a geodesic defined on \mathbb{R} .
- (2) Let (M^n, g) be a Riemannian manifold and let ∇ be the Levi-Civita connection for metric g. Let $p \in M$ be any point.

Prove that there exists a coordinate chart x near p such that $\nabla_{\frac{\partial}{\partial x_i}\frac{\partial}{\partial x_j}}(p) = 0 \text{ for all } i, j.$ *Hint:* Use the exponential map to define x.