Navigation Panel: Previous | Up | Forward | Graphical Version

Assignment 6 Solutions

Page 83 #1

(a) (1+i)^i = exp[i log(1+i)] = exp[i(ln |1+i| + i arg(1+i))]
= exp[i ln sqrt(2) - arg(1+i)] = exp[(i ln 2)/2 - (pi)/4 + 2npi]
= exp[-(pi)/4 + 2npi] exp[(i ln 2)/2] where n is an arbitrary integer.

(b) (-1)^1/pi = exp[ 1/(pi) log(-1)] = exp[1/(pi) (ln |-1| + i arg(-1))]
= exp[1/(pi)(0 + i pi + i 2npi)] = exp[(2n+1)i] where n is an arbitrary integer.

Page 83 #2

(b) The principal value is exp[3pi i Log( (e/2)(-1 - sqrt(3)i) )] = exp[3pi i (ln|(e/2)(-1 - sqrt(3)i)| + i Arg((e/2)(-1 - sqrt(3)i)) ]
= exp[3pi i (1 - i 2pi/3)] = exp(2 pi^2 + 3 pi i)
= exp(2pi^2)exp(3 pi i) = exp(2pi^2)(-1) = - exp(2pi^2).

(c) The principal value is exp[ 4i Log(1-i) ] = exp[ 4i(ln|1-i| + i Arg(1-i) )]
= exp( 2i ln 2 - 4(-pi/4) ) = exp( pi+ 2 i ln 2) = e^pi exp(i 2 ln 2)
= e^pi(cos(2 ln 2) + i sin(2 ln 2)).

Page 83 #3

(-1 + sqrt(3)i)^3/2 = exp[3/2 log(-1 + sqrt(3)i)] = exp[ 3/2 (ln 2 + i (2pi)/3 + i 2n pi)]
= exp[ 3/2 ln 2] exp[i pi(1+3n)] = +/- exp[3/2] = +/- 2sqrt(2) (since exp[i pi(1+3n)] = 1 if n is odd, -1 if n is even).

Page 84 #4

(a) (-1 + sqrt(3)i)^(1/2) = [2 exp(i 2pi/3)]^(1/2) = sqrt(2) exp(i pi/3 + i 2npi/2) = sqrt(2) exp(i pi/3) exp(n pi i) = +/- sqrt(2) exp(i pi/3) since exp(n pi i) is 1 if n is even, -1 if n is odd.

Thus [(-1 + sqrt(3)i)^(1/2)]^3 = { (- sqrt(2) exp(i pi/3))^3, (sqrt(2) exp(i pi/3))^3 } = { - 2 sqrt(2) exp(i pi), 2 sqrt(2) exp(i pi) } = { + 2 sqrt(2), - 2 sqrt(2) } = +/- 2 sqrt(2), the same answer as in question 3.

(b) (-1 + sqrt(3)i)^3 = [2 exp(i 2pi/3)]^3 = 8 exp(2pi i) = 8 so [(-1 + sqrt(3)i)^3]^(1/2) = 8^(1/2) = +/- sqrt(8) = +/- 2 sqrt(2), the same answer as in question 3.

Page 84 #6

|z^a| = |exp(a log z)| = |exp[a(ln |z| + i arg z)]| = exp(Re(a ln |z| + i a arg z)] = exp(a ln |z|) (using the fact that |exp(w)| = exp(Re w) for any complex number w).

Now you could simply observe that this equals the usual real-variable power |z|^a (which is the principal value of the complex-variable interpretation of |z|^a). Or, you could write it as exp(a Log |z|) (since Log t = ln t when t is a positive real number), and exp(a Log |z|) is by definition the principal value of |z|^a.

Page 84 #7

i^c = exp(c log i) = exp[c(ln |i| + i arg i)] = exp[ c(ln 1 + i (pi)/2 + i 2 n pi)]
= exp[ c i pi (2n + 1/2)] = exp[(a + bi) i pi (2n + 1/2)]
= exp[-b pi (2n + 1/2)] exp[a i pi(2n + 1/2)]. Therefore, |i^c| = exp(-b pi(2n + 1/2)) = exp(-bpi/2) exp(-2 n b pi).

The only way these moduli can all be have the same value (regardless of the value of n) is if exp(-2 n b pi) always has the same value. When n=0 it has the value exp(0)=1, so that means we need to have exp(-2 n b pi) = exp(0) for all n, which means -2 n b pi must be zero for all n, which means b must be zero.

Therefore, the condition on c in order for |i^c| to have just one single value is that b=0, in other words, that c be real.

Page 91 #1

        / 2              2        / 2
   (a)  |   ( (1/t) - i )  dt  =  |    (1/t^2) - (2i/t) + i^2  dt
        / 1                       / 1
        
       / 2                                                 |2
     = |   (1/t^2) - (2i/t) - 1 dt  =  -1/t - 2 i ln t - t |
       / 1                                                 |1
   
     = -1/2 - 2 i ln 2 - 2 + 1 + 0 + 1  =  -1/2 - i 2 ln 2.
        / pi/6   i2t        1   i2t | pi/6
   (b)  |       e    dt  = --  e    |
        / 0                2i       | 0
which equals (-i/2)(exp(ipi/3)-exp(i0)) = (-i/2)(exp(ipi/3)-1) = (-i/2)(cos(pi/3) + i sin(pi/3) - 1) = (-i/2)(-1/2 + i sqrt(3)/2) = sqrt(3)/4 + i/4.
       / infinity   -zt                / T  -zt
   (c) |           e    dt  = lim      |   e    dt 
       / 0                 T->infinity / 0
   
                             -zt | T                             -zT
     =   lim        -(1/z) e     |    =  lim         (1/z - 1/z e   ).
      T->infinity                | 0    T->infinity

Write z=x+iy; then e^(-zT) = e^(-xT)e^(-iyT). The modulus of this is e^(-xT). If x > 0, this goes to zero as T -> infinity , and hence e^(-zT) -> 0 (because if the modulus of a complex number goes to zero, so does that number). Therefore, in the case Re(z) > 0, we have

    / infinity   -zt   
    |           e    dt  = 1/z - (1/z)(0) = 1/z.
    / 0  

If Re(z) <= 0, the limit of e^(-zT) (as T goes to infinity) does not exist. To see this, note that if Re(z) < 0, |e^(-zT)| = e^(-xT) goes to infinity. ("x" and "Re(z)" are just different names for the same thing). So clearly the limit does not exist in this case. In the remaining case, where Re(z)=0, e^(-zT) = e^0 e^(-iyT) which has constant modulus 1 but continues to go round and round the unit circle has T -> infinity , so the limit fails to exist in this case as well.

Therefore, if Re(z) <= 0,

    / infinity   -zt   
    |           e    dt 
    / 0  
does not exist.

Page 91 #2

If m != n,

   (using t for theta)
   
   /2 pi   imt  -int        /2 pi  i(m-n)t          1      i(m-n)t |2 pi
   |      e    e     dt  =  |     e        dt  =  ------  e        |
   /0                       /0                    i(m-n)           |0
   
                              1       2 pi i (m-n)     0
                          = ------ ( e              - e  )
                            i(m-n)
   
                              1
                          = ------ ( 1 - 1)  = 0.
                            i(m-n)

If m=n,

   
   /2 pi   imt  -int        /2 pi            |2 pi
   |      e    e     dt  =  |     1  dt  = t |      = 2 pi - 0  = 2 pi.
   /0                       /0               |0

Page 99 #1

(a) Here z(theta) = 2 e^(itheta) and z'(theta) = 2ie^(itheta). Therefore,

   (using t for theta)
   
    /              / pi 2e^(it) + 2                  / pi 
    |  f(z) dz  =  |    ----------- 2i e^(it) dt  =  |     (2e^(it)+2) i dt
    /C             / 0    2e^(it)                    / 0
   
                                       |pi                  |pi
                 = (2/i e^(it) + 2t) i |    = 2e^(it) + 2it |
                                       |0                   |0
   
                 = 2e^(i pi) + 2i pi - 2e^0 - 0  
   
                 = -2  + 2i pi - 2  = -4 + 2 i pi.

(b) Again, z(theta) = 2 e^(itheta) and z'(theta) = 2ie^(itheta). Therefore,

   (using t for theta)
   
    /              / 2pi 2e^(it) + 2                  / 2pi 
    |  f(z) dz  =  |     ----------- 2i e^(it) dt  =  |     (2e^(it)+2) i dt
    /C             / pi    2e^(it)                    / pi
   
                                       |2pi                  |2pi
                 = (2/i e^(it) + 2t) i |     = 2e^(it) + 2it |
                                       |pi                   |pi
   
                 = 2e^(i 2pi) + 4 pi i - 2e^(i pi) - 2 pi i  
   
                 = 2  + 4 pi i - (-2) - 2 pi i  = 4 + 2 pi i.

(c) We know that the answer must be the sum of the answers in (a) and (b), i.e., (-4 + 2 pi i) + (4 + 2 pi i) = 4 pi i. But we're asked to verify this by direct calculation. Again, z(theta) = 2 e^(itheta) and z'(theta) = 2ie^(itheta). Therefore,

   (using t for theta)
   
    /              / 2pi 2e^(it) + 2                  / 2pi 
    |  f(z) dz  =  |     ----------- 2i e^(it) dt  =  |     (2e^(it)+2) i dt
    /C             / 0     2e^(it)                    / 0 
   
                                       |2pi                  |2pi
                 = (2/i e^(it) + 2t) i |     = 2e^(it) + 2it |
                                       |0                    |0 
   
                 = 2e^(i 2pi) + 4 i pi - 2 e^0 - 0  
   
                 = 2  + 4 pi i - 2  = 4 pi i.

Page 99 #2

(a) Here, z(theta) = 1 + e^(itheta) and z'(theta) = ie^(itheta). Therefore,

   (using t for theta)
   
    /              / 2pi                                  / 2pi 
    |  f(z) dz  =  |     [(1+e^(it)) - 1] i e^(it) dt  =  |     i e^(2it) dt
    /C             / pi                                   / pi 
   
                                  |2pi    
                 = i/(2i) e^(2it) |     = (1/2) [ e^(4 pi i) - e^(2 pi i) ]
                                  |pi 
   
                 = (1/2) (1-1)  
   
                 = 0.

(b) This can be parametrized by x(t)=t, y(t)=0, 0 <= t <= 2. Then z(t) = t and z'(t) = 1, so

    /               / 2                2         | 2
    |   f(z) dz  =  |    (t-1) dt  =  t /2  - t  |    = 4/2 - 2 - (0-0) = 0.
    / C             / 0                          | 0

Page 100 #3

Let C_1, C_2, C_3, C_4 be the legs shown.

     y
   
     |    C2
    i|-----<---+ 1+i
     |         |
     |C3       |C1
     |         |
   --+---->----+- x
    0|   C4    1

These can be parametrized by:

C_1: x(t) = 1, y(t) = t, 0 <= t <= 1. Here z(t) = 1+ti and z'(t) = i.

C_2: x(t) = t, y(t) = 1, t from 1 down to 0. Here z(t) = t+i and z'(t) = 1.

C_3: x(t) = 0, y(t) = t, t from 1 down to 0. Here z(t) = ti and z'(t) = i.

C_4: x(t) = t, y(t) = 0, 0 <= t <= 1. Here z(t) = t and z'(t) = 1.

   /             /            /            /            /
   |  f(z) dz =  |  f(z) dz + |  f(z) dz + |  f(z) dz + |  f(z) dz
   /C            /C1          /C2          /C3          /C4
   
   
                 /1           ____            /0          ___
              =  |  pi exp[pi(1+ti)] i dt  +  | pi exp[pi(t+i)] dt
                 /0                           /1
   
                     /0           __            /1          _
                  +  |  pi exp[pi(ti)] i dt  +  | pi exp[pi t] dt
                     /1                         /0
   
                 /1                               /0          
              =  |  pi exp(pi -  pi t i) i dt  +  | pi exp(pi t - pi i) dt
                 /0                               /1
   
                     /0                          /1     
                  +  |  pi exp(-pi t i) i dt  +  | pi exp(pi t) dt
                     /1                          /0
   
                 /1       pi  - pi t i       /1     - pi i   pi t  
              =  |  pi i e   e        dt  -  |  pi e       e      dt
                 /0                          /0
   
                     /1       - pi t i       /1     pi t  
                  -  |  pi i e        dt  +  |  pi e      dt
                     /0                      /0
   
   
               pi          /1  -pi t i              -pi i       /1  pi t
     = (pi i e    - pi i)  |  e        dt  + pi (- e       + 1) | e      dt
                           /0                                   /0
   
                        pi       /1  -pi t i            /1  pi t
              = pi i (e    - 1)  |  e        dt  + 2 pi | e      dt
                                 /0                     /0
   
   
                       pi        -1    -pi t i |1               pi t |1
              = pi i (e   - 1)  ----  e        |   + (2 pi/pi) e     |
                                pi i           |0                    |0
   
                   pi                     pi
              = -(e  - 1) (-1 - 1)  + 2 (e  - 1)
   
                   pi
              = 4(e  - 1).

Page 100 #6

C can be parametrized by z(t) = e^(it), 0 <= t <= 2pi. With t in this interval and using the branch of log given in the question, log(e^(it)) = it. (This would not be true if, for instance, we were using the principal branch Log. Then we'd need to let t range over the interval -pi< t <= pi in order to have Log(e^(it)) = it.)

Then z'(t) = ie^(it), and

   /           /2 pi                       it       /2 pi  -it  -t    it
   | f(z) dz = |      exp[ (-1+i)(it) ] i e   dt  = |     e   e    i e   dt
   /C          /0                                   /0
   
                  /2 pi  -t           -0     -2 pi              -2 pi
              = i |     e   dt  =  i(e   -  e     )  =  i (1 - e     ).
                  /0

Page 100 #11

Recall that if M is a number such that |f(z)| <= M everywhere on C, then | INT f(z) dz| <= ML where L is the length of C.

In our case, L = 3+4+5 = 12 (C is a triangle with side lengths 3, 4, and 5).

Also,

     z   _       z     _     Re z
   |e  - z| <= |e | + |z| = e      + |z|.

The point on C where |z| is greatest is the point on C farthest from the origin, which is -4. Therefore, |z| <= 4 for all z on C.

Also, Re z ranges between -4 and 0 on C, so e^(Re z) ranges between e^(-4) and e^0. e^0 = 1 is the greater of these, so e^(Re z) <= 1 for all z on C.

Therefore, everywhere on C, we have

     z   _       Re z
   |e  - z| <=  e      + |z|  <=  1 + 4 = 5,
   
   so
   
   | /          |
   | |  f(z) dz |  <=  M x L = 5 x 12 = 60.
   | /C         |


Navigation Panel: 

  Go backward to Assignment 6 (due Thursday October 30th)
  Go up to Contents
  Go forward to Assignment 7 (due Thursday November 6th)
  Switch to graphical version (better pictures & formulas)