The Mathematical Experience

Quest University Canada

Block 4, Spring 2015

Mathematics is one of the oldest of sciences; it is also one of the most active, for its strength is the vigour of perpetual youth. – Andrew Russ Forsyth

Mathematics is one of the few subjects that a student can study throughout high school and even few years into college without coming into contact with any results invented since 1800. – Alan Hammond

This course will blend an exploration of important mathematical ideas with an examination of the place of math within the intellectual landscape. We will make conjectures and construct proofs, working with problems from fields such as topology and group theory. As we do mathematics, we will study works of both non-fiction and fiction and discuss issues such as the portrayal of math and its practitioners in the media, the nature of mathematical truth, women and members of underrepresented minorities in math, and genetic influences on mathematical achievement.

By the end of this course you should be able to:

- 1. Understand key ideas from three areas of modern mathematics: number theory, group theory, and topology
- 2. Recognize important issues in the contemporary mathematics community
- 3. Communicate mathematics with greater clarity and more confidence levels
- 4. Create mathematics, and evaluate mathematical writing

Course Information

Tutor:	Dr. Sarah Mayes-Tang	Dates:	Block 4, Spring 2015
Office:	Academic Building 447	Time:	M-F 9-12
E-mail:	sarah.mayes-tang@questu.ca	Classroom:	Academic Building 322
Office Hours:	M 8:15-8:45; TWF 1-2	Website:	moodle2.questu.ca

Course Topics

We will explore important ideas in the following areas of modern mathematical research.

- Number Theory: Why is number theory called the 'Queen of Mathematics'? How do we describe the *poetry* of numbers? What are numbers made of? What qualities may make a number special?
- Group Theory: What is symmetry? How many wallpaper patterns are possible? How do we describe mathematical patterns? What qualities do different systems share?
- Topology: What is the shape of our universe? How do we envision ourselves in 4 dimensions? In what way is a donut the same as a coffee cup? How many different surfaces are there?

We will also examine the experience of learning, discovering, inventing, and critiquing new mathematics in the twenty-first century.

- What is mathematics, really?
- What is mathematical creativity?
- Who creates new mathematics?

Course Texts

The following books are available from the university bookstore. With the exception of *The Mathematical Experience*, all are mandatory. You will need a *paper* copy of each.

- Davis, Philip J., and Hersh, Reuben. *The Mathematical Experience*. New York: Mariner Books, 1999.
- Ogilvy, C. Stanley, and Anderson, John T. *Excursions in Number Theory*. New York: Dover Publications, 1988.
- Weeks, Jeffrey R. The Shape of Space. 2nd ed. New York: Chapman & Hall, 2001.
- Henrion, Claudia. Women in Mathematics: The addition of difference. Bloomington: Indiana University Press, 1997.
- Ogawa, Yoko. The Housekeeper and the Professor. New York: Picador, 2009.

Additional readings will be posted on the course website.

Weekly Meeting

I will schedule a meeting with each of you on each Thursday of the course to discuss your progress in the class. Please bring your journal, current work, and recently returned assignments with you.

Course Requirements

If I have made any valuable discoveries, it has been owing more to patient attention than to any other talents - Sir Isaac Newton

To pass this course you will need to complete the following.

- 3 Mathematical Synthesis Assignments
- Mathematical Creations Project
- In-Class Report and Annotated Bibliography on Mathematics and Your Interests
- Satisfactory preparation for and participation in a Panel Discussion
- Daily readings and journal entries

Synthesis Assignments

You have to be confused before you can reach a new level of understanding anything. – Dudley Herschbach

Synthesis Assignments will give you the opportunity to contemplate, struggle with, and conquer mathematical problems. The questions on these problem sets are challenging and will probably look quite different from those that you have encountered in previous mathematics classes. The process of working through problems in this course mimics mathematical discovery, and working through them will help you to understand the modern mathematical experience.

These assignments will also allow you to develop your mathematical writing skills. Writing clear mathematics is not only important in math classes: it will help to improve your critical thinking and your ability to communicate ideas from other fields clearly. I have high expectations for your writing; please read the handout 'How to Write Mathematics' carefully before submitting your first Synthesis Assignment. If you have questions about what I expect, please come and speak with me.

You will complete one synthesis assignment on each of our mathematical themes: number theory, topology, and group theory.

Mathematical Creations Project

At first I'm terribly confused, but after a while I chip away at my wrong ideas until I'm left with an answer. So I think that I'm working in the sculptor mode, rather than the inspired painter.

Inspiration starts things, but only hard work really gets anywhere. - Bradley Efron

Over the course of the semester, you will work with a partner to create your own original mathematics. This project will give you the opportunity to more deeply understand what mathematical creativity is.

Over the first few days of the course, you will will work with your partner to think of a new concept from geometry based upon the concepts that you are already familiar with. You should do your best to come up with an original concept that you would like to learn more about. For example, concepts like scalene triangles or concentric circles are *not* original.

The following will be due on Thursday, April 2.

- A descriptive name of your creation (3 points)
- A definition of the concept (8 points)
 - Definitions in mathematics are very precise, and good definitions are difficult to write. Make sure that your definition is neither too broad nor too narrow.
- At least one prototypical illustration to accompany your concept (2 points)
- A log of your daily progress in designing and refining your concept (5 points)

Details on the main part of this project will be given at at the end of Week 1.

Connections In-Class Report

The universe is written in the language of mathematics. -Galileo Galilei

This project will give you the opportunity to explore how mathematics is important in areas that you are passionate about. You will report how mathematics is used in an area of interest to you in a 5-8 minute presentation to the class. You will also submit an annotated bibliography that summarizes your research.

The only requirement is that your topic be of interest to you. When choosing a topic, think about what you are truly interested in rather than something that you think can be easily related to mathematics. Potential topics range from basketball to literature to philosophy and social work. Please come and talk with me to find material and mathematical connections to your topic.

Your completed Topic Selection Form is due on Tuesday, March 31, and presentations will take place between April 8 and April 13.

Panel Discussion

If I have seen further it is because I have stood on the shoulders of Giants.– Isaac Newton

A panel discussion is a moderated discussion between selected speakers on a specific topic, in front of an audience. On Tuesday, April 21 we will be staging six short panel discussions between groups of contemporary mathematicians. The purpose of these panel discussions will be to learn more about the lives of contemporary mathematicians and what it is like to do mathematics in the modern era.

You will organize the panels as a class during Week 3, and play the role of two mathematicians in two separate panels on the day of the discussions. More details on this project will be given at the beginning of Week 3.

Preparation and the Mathematics Journal

Obviously you work like hell and once in a while you notice something really unexpected. –David Donoho

The reading assignments will help you to understand mathematical material and will prepare you for class discussions. These assignments come in two flavours. Mathematical reading discusses the subject of mathematics and comes from the fields of number theory, topology, and group theory. You should aim to *understand* when you read mathematics and will often need to stop and think about what you read. See the next section for some reasons on why it is important to read mathematics outside of class. Second, you will be reading *about* mathematics and mathematicians. If you see references to mathematics in this type of reading, do not spend too much effort trying to understand the details of the arguments. I am more interested in the mathematical experience that these readings describe.

Mathematical Reading and Journal

The ability to understand mathematical texts is an important skill for *any* future mathematical study. This skill is vital for at least three reasons.

- 1. **Future Learning**. When you need to learn a mathematical concept on your own, your main resources will be written.
- 2. Efficiency. In an ideal world we might try to discover all the mathematics by ourselves, but this would be impractical. The great abundance of mathematical writing available allows us to learn from the experts.
- 3. Learning to Communicate. Just as reading many stories makes you a better storyteller, reading a lot of mathematics makes you a better mathematical communicator.

You will write about mathematics in your Journal daily. Each daily entry consists of two parts.

- 1. A brief summary of key points and reflections from the math reading, phrased in your own words. This should be more than simply a series of quotes or headings from the reading; sometimes a shorter entry is better than a longer entry! It should include the following organizational features:
 - Date
 - Reference to the reading at the start of the entry (e.g. book and page numbers or article title)
 - Page number references throughout the entry
 - A summary of the key points from the reading.
- 2. Responses to assigned questions, written in a clear and easy to follow manner. It should include the following organizational features.
 - Date
 - If the question comes from the text, the question number
 - If the question is posted online, a restatement of the question
 - The work that you needed to get to your conclusion
 - A clear conclusion

The Math Journal will serve several purposes.

- Writing a summary of what you read about helps you to synthesize new information.
- The record that you create will serve as a reference days or weeks after you first encounter the material.
- Completing daily problems helps you to gauge your understanding of new material and prepares you for the more difficult questions in Synthesis Assignments.
- Writing about mathematics for yourself helps to improve your mathematical communication skills in general.

I will be collecting the journals unannounced throughout the course, so please bring your journal to class daily.

Participation

- Actively participate in class discussions, asking questions, offering comments, and listening carefully to what others say. If you have a question about something, please ask! There will likely be other people who have the same question.
- Be respectful of other class members and maintain a collaborative environment. Contributing to a class discussion does not mean talking a lot. You should listen carefully to others' ideas and be careful about offering a critique. When you do object to others' ideas, be kind.
- Respect course policies.
- Note Taking. I recommend that you use a binder to organize your notes, as there will be frequent in-class handouts and worksheets that would be difficult to corral into a notebook.

Academic Integrity

While googling a homework problem or trading solutions with a classmate may seem like good strategies for doing well in this class, these actions will prevent you from learning material, refining your problem-solving skills, and developing self-sufficiency and self-esteem.

The consequences for cheating are severe. Any blatant academic dishonesty will result in failure of the course and immediate reporting to the Chief Academic Officer.

The following actions are *not* considered cheating.

- Discussing questions from Synthesis Assignments with classmates, building off of each others' ideas
- Using online resources to help you understand the content of the course or practice problems (e.g. problems that you do not submit)

The following actions *are* considered cheating.

- Looking for solutions to Synthesis Assignment problems online (e.g. by searching or posting on a message board).
- Copying the writing or explanations of mathematical work from someone else
- Using others' words or ideas without properly citing them

These examples are not comprehensive; if you have questions about whether something is considered cheating, please speak with me first.

Grading

Your fina	l grade will be calcula	ated as follows.			
30%	Synthesis Assignme	ents			
	Each of the Sy	nthesis Assign	ments will be wo	rth 10% of your	final grade
25%	Mathematical Crea	ations Project			
15%	Connections Repor	t and Annotate	ed Bibliography		
10%	Panel Discussion				
20%	Mathematics Journ	nal and Prepara	ation for Class		
The cour	se grading scale is:				
А	$93 extsf{-}100\%$	В	83-86%	\mathbf{C}	73-76%
A-	$90 extsf{-}92\%$	B-	80-82%	C-	70-72%
B+	87-89%	C+	77-79%	D	60-69%

Narrative Evaluation

Any student at Quest can request a narrative evaluation (e.g. a written paragraph) in addition to their letter grade in any course. A narrative evaluation will give you more comprehensive feedback that you can learn from and additional information to present employers and graduate schools. If you wish to take advantage of this option, you have until the end of the 6th day of a course to sign up on the Registrar's Office Portal site.

Disability Accommodations

If you have a disability for which you seek accommodation, please make sure to have registered with the Learning Commons, as specified in the Student Accommodation Policy (http://www.questu.ca/pdfs/_uploads/content/student_accommodation_policy.pdf), and provide us with your Memorandum by the second day of class.

Additional Course Policies

- Please be on time to class. If you arrive for class and the door is closed this means that you are late. You will be permitted to be late 2 times without penalty during the block. On the third time, I will deduct 1% off of your final grade, and 1% more for each time that you are late.
- I expect that you will attend every class session. If you must miss a class for a valid reason (such as illness or a family emergency), please let me know *before* class. I reserve the right to ask for documentation to support your absence. For every class that you miss without a valid reason, 5% will be deducted from your *full* course grade.
- Bring pencils, paper, a scientific calculator, and a laptop to every class. You may also need to bring special materials such as scissors or pencil crayons to some classes, but will be given advanced notice when this is required.
- You cell phones must be off during class, and your laptops should be shut unless we are using them for a class activity.

- Always be respectful in your speaking and actions. Do not use profanity.
- All homework is due at the beginning of class, and all deadlines are absolutely firm. I will not accept late homework since we need to be able to discuss solutions in class, and because staying on top of deadlines encourages you to keep up with course material.
- If you need an extension on an assignment, I *must* see documentation, and you must place your request at least 24 hours ahead of the due date.
- Office hours: If you are not able to make my drop-in office hours, or need to speak with me privately, please e-mail me to arrange an appointment.
- E-mail: During the block I check my e-mail on weekdays at the beginning and end of the day, and sporadically at other times. Please do not e-mail me with questions that may be easily answered by looking at this syllabus, the course website, or asking other members of the class. Be polite and use proper English grammar.
- Please do not bring food into the classroom. You may bring drinks.

Reading Assignments

The anticipated reading assignments for the class are below. There may be changes in the reading (particularly in the mathematics reading) based on our progress in-class. The Day x readings are *due* on Day x.

Day 1

• A Mathematician's Lament: How school cheats us out of our most fascinating and imaginative art form by Paul Lockhart

Day 2

- Chapters 1 and 3 of Excursions in Number Theory
- But Aren't Truth and Beauty Supposed to be Enough?, James Gleick
- How to Fall in Love with Math, Manil Suri

Day 3

- Chapter 8 and Chapter 4 (pp 39–45) Excursions in Number Theory
- Mathematics as a Creative Art, Paul Halmos

Day 4

- Chapter 4 (pp 45–54) and Chapter 7 of Excursions in Number Theory
- 'Beauty and Truth in Mathematics' by Doris Schattschneider from $Mathematics \ and \ the \ Aesthetic$
- Equations are Art Inside a Mathematician's Brain, Claudia Moskowitz

Day 5

- Chapters 11 (pp 135-139) and 2 of Excursions in Number Theory
- Computers still can't do beautiful mathematics, Gina Kolata
- 'Proof' from *The Mathematical Experience* by Philip Davis, Reuben Hersh, and Elena Anne Marchisotto
- Begin The Housekeeper and the Professor (to be completed by Day 10)

Day 6

- Sections 2, 3, 4, 7, 8, 10, 19, 20, 29 of A Mathematician's Apology, G. H. Hardy
- The Math Gene: A Ticket to Wealth or Nerdiness?, Ronald Lipsman
- Impossible Cookware and Other Triumphs of the Penrose Tile, Patchen Barss

Day 7

• Chapter 1 from Women in Mathematics

Day 8

- Massively collaborative mathematics, Tim Gowers and Michael Nielsen
- Classifying Frieze Patterns, Sarah-Marie Belcastro and Thomas C. Hull

Day 9

- Chapter 2 of Women in Mathematics
- Why are there still so few women in science?, Eileen Pollack

Day 10

- The Housekeeper and the Professor
- Watch *Flatland* trailer or movie

Day 11

• Familiarize yourself with biographies for panel discussions

Day 12

- Chapters 1 and 2 of *The Shape of Space*
- Download Torus Games on your computer (http://www.geometrygames.org/TorusGames/)
- Chapter 5 of Women in Mathematics
- Biography of Vivienne Malone-Mayes or Fern Hunt from Women in Mathematics

Day 13

- How math got its Nobel, Michael Barnay
- Is there a Curse of the Field's Medal?, Janos Kollar
- Chapter 3 of Women in Mathematics
- Chapters 3 and 4 of *The Shape of Space*

Day 14

- Chapters 5 and 6 of *The Shape of Space*
- 'Mathematics as an addiction: Following mathematics to its end' from *Loving and Hating Mathematics* by Reuben Hersch and Vera John-Steiner
- The Mathematical Mind by Ayala Ochert
- If you think you're a genius, you're crazy, Dean Simonton

Day 15

• Chapters 7, 13, and 14 of The Shape of Space

Day 16

- Biographies for Panel Discussion
- Chapter 15 of *The Shape of Space*

Day 17

- Chapter 6 Women in Mathematics
- Useful invention or absolute truth?, George Johnson

			APRIL 2015			
SUNDAY	Monday	TUESDAY	WEDNESDAY	THURSDAY	Friday	SATURDAY
	Day 1 -	Day 2 0	Day 3 1	Day 4 2	Good Friday 3	
	1	Patterns in the Primes	Changing Perspective:	Perfect, Lucky, and		
	Patterns in Numbers	Why Math?	Modular Arithmetic	Fibonacci Numbers		
	The Primes	Topic for Math	What is mathematical	Mathematics & The		
	What is Math?	Connections Project	creautyty :	Aesuleuc		
		Due		Fart 1 of Mathematical Creations Project Due		
	Day 5 6	Day 6 7	Day 7 8	$Day \ 8 \qquad 9$	Day 9 10	
	Pythagorean Triples	The Set of Symmetries	Combining Symmetries	More Cayley Tables	What is a Group?	
	Diophantine Equations	Symmetries as Actions	Cayley Tables	Patterns in Music	Women in Math	
	How does math grow?	What is it like to do math	The Ideal Mathematician	The Mathematical	Connections Day 3	
	What is truth in math?	research?	Connections Day 1	Community		
		Number Theory Synthesis Due		Connections Day 2		
	Day 10 13	Day 11 14	Day 12 15	Day 13 16	Day 14 17	
	Exploring Groups	Panel Organization	Flatland	Nonorientable Surfaces	3-Manifolds	
	A Fictional	Group Theory	Gluing to make new	The 3-Torus	New Manifolds from Old	
	Mathematician: The	Synthesis Due	shapes	Mathematical Prizes	Manifolds	
	Professor		Topology vs. Geometry	Mathematics as a 'Young	Mathematical Minds: Creative Genius k_r	
	Connections Day 4		Minorities in Math	Man's Game'	Insanity	
	Day 15 20	Day 16 21	Day 17 22	Day 18 23		
	Preparation for Week 4	Geometry of Surfaces	Is Mathematics Discovered or Invented?	Mathematical Creations Presentations		
		The Shape of Space	Course Wrap-Up	Mathematical Creativity,		
		Wathematicians: A Panel	Topology Synthesis	Revisited		
		Discussion	Due	Mathematical		
		Panel Discussion Preparation and Notes		Creations Project Due		
		Due				

SCHEDULE FOR The Mathematical Experience April 2015