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Abstract. In this paper we suggest a simple but general method of
establishing symmetry properties of stable solutions of nonlinear elliptic
equations. The method relies on characterization of symmetry break-
ing with a help of zero modes and on a generalization of the Perron-
Frobenius theory.

1. Introduction

In this paper we suggest a new method of establishing symmetry properties of systems

of non-linear partial differential equations of the form
F(u,0u,0?u,z) = 0 (1.1)

on a domain 2 C R™ with a smooth boundary and with the Dirichlet boundary condition.
Here F(u,&,7n,z) is a twice differentiable function from R™ x R™" x R™ x Q to R™,
u is a vector-function from Q to R™, Ou and 0?u are the collections of the first and
second derivatives of u defined as (01u,...,0,u) and (0;;u, i,j = 1,...,n), respectively,

where 0; is the partial derivative w.r. to z;, and 0;; = 0;0;. We let u = (ul,...,u™)
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and F = (F',...,F™). In what follows partial derivatives are signified by assigning the

— Ou
= bz,

variable over which they are taken as a subindex, e.g., u,, = J;u

We assume that the function F' satisfies the following conditions:

STHNER > =) Fik | (u,0u,0%u, 0)&€; > 8¢ (1.2)
i
for each o and for some § > 0, i.e. the matrices (F% ) are uniformly elliptic. In the
z;T;
vector case, m > 2, we assume, in addition, that
Fsgimj = F{j‘gm da,p and F;"gi = qu‘gz 00,8 - (1.3)

If Q is unbounded, then to minimize technicalities we assume also that

&F% =F% and F% =FP, (1.4)

We believe that condition (1.3) can be relaxed and condition (1.4) can be removed. See
the conjecture and the discussion following it at the end of the next section.

We say that a solution ug to an equation ¢(u) = 0 is stable iff spec Dé(ug) C {z € C |
Rez > 0}. Here D¢(u) is the Fréchet derivative of ¢(u) at w.

If F is linear in 2w, then condition (1.4) guarantees that there is a function ¢:
R™ x R™ x Q — R s.t. F(u,0u,d?u,z) is the Fréchet derivative of u — ¢(u,du, ) in u.

The solutions to Eqn (1.1) are critical points of the energy functional

E(u) = /A¢(u(ac),8u(a:),a:)d"a:, (1.5)

and stable solutions are local (or relative) minima of this functional. This observation is
not used in our paper.

Let Gsym be the symmetry group of the equation ¢(u) = 0, i.e. the set of all transfor-
mations, g, of u s.t. ¢(u) =0 = ¢(gu) = 0. Now we are ready to state the main result of

this paper.



Theorem 1.1. Assume conditions (1.2)—(1.4) hold and assume that the group, O(n), of
rotations of x, is a symmetry subgroup of Eqn (1.1). If u is a stable solution to (1.1),
s.t. (a) Fgﬁ,’.m. e C1(Q) and Fsg’, F% € L*(Q), (b) FS% <0 and # 0 Va # 3 and (c)
0"u € (m)"”']LZ(Q), V |v| <1, then u is spherically symmetric.

In general, the reverse implication is not true. However, sometimes the method devel-
oped in this paper does yield inverse implication, namely that certain type of spherically
symmetric solutions are stable. This was done in [OS] for the Ginzburg-Landau and related
equations.

There is nothing particularly special about the spherical symmetry. A similar result
holds for any other continuous symmetry possessed by the equation in question. Thus for
Eqn (1.1) on R™ with F' not explicitly depending on z (i.e. translationally invariant), stable
solutions are translationally invariant, i.e. are constant. An example of other symmetry

groups is given in

Theorem 1.2. Assume, besides conditions (1.2)—(1.4), that m > 3, and the group O(m)
of rotations of u is a symmetry subgroup of (1.1). The only stable solution, u, to (1.1) s.t.
(a) F% € CY(Q) and F%, , Fgy € L(Q) and (b) FY; <0 and Z0Va#f,Vz €Q, is
;T Uz,
a trivial one, u = 0 (if such exists).
The class of equations covered by Theorems 1.1 and 1.2 is rather wide. Below we give

two examples of such equations which arize in applications.

Let Bgr be the ball in R™ of radius R centered at the origin. The first equation is
div(|Vu®[PVu®) = f*(|z|, u) ,

on ! = Bg, where a = 1,...,m, u = (u,...,u™), p > 0 and f* are real functions

satisfying the inequalities



The second equation — also on By — is

tanh(BAu — Bu+ h) =u

where h is a smooth function of |z|.

The first of these equations appears in the case of potential flows (electrodynamics,
magnetodynamics, diffusion, etc.) in nonlinear media with a response coefficient (dialectric
constant, permeability, diffusion coefficient, etc.) which is a function of the field strength;
in fluid dynamics; in gravity and in computer vision. Furthermore, equations of these type
were considered in quantum chromodynamics [AP] (as an effective action approximation),
in modified Newtonian gravity [BM,M] (as a way to avoid the dark-matter hypothesis
for galatic systems) and in the theory of nonlinear composite media [BB]. The second of
the equations above appears as the mean-field approximation in the problems of phase
transition for the Ising model in statistical mechanics and in mathematical epidemiology
(e.g. the travelling wave problem for the Kermack-McKendrick-Kendall model for spatial
spread of an epidemic (see e.g. [AR, DK] and references therein).

Theorems 1.1 and 1.2 seem to be new, but results in this spirit have appeared in
the literature before. In the special scalar case (i.e. m = 1 and w is a real function)
with the function F linear in 8?u, i.e. when Eqn (1.1) is an Euler-Lagrange equation of
certain functional (see the paragraph containing Eqn (1.5)), the symmetric rearrangement
technique gives the result of Theorem 1.1 (see [LL]). Furthermore, pioneering works [GNN,
O] have shown that if a scalar version of Eqn (1.1) is spherically symmetric in z, then
positive solutions of this equation are, also, spherically symmetric. These results were
significantly extended in [ChK, Li, LiNil,2,3]. They seem to be complementary to ours:
the works mentioned above deal with unstable but positive solutions of the equations in
question, while our paper, with stable ones but with no positivity required. The works
above use the method of moving planes which is, at least formally, rather different from

our method. Also, in the case of Q@ = {z € R™ | |z| > R} for some R these papers require
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detailed information about asymptotic behaviour of the solutions in question, something
which is irrelevant for our techniques. Note that neither the symmetric rearrangement
method nor the method of moving planes are applicable to global gauge symmetries treated

in Theorem 1.2.

2. Proof of Theorem 1.1

To exhibit the ideas of our approach we first consider the scalar case of m = 1.
Consider the linearized operator for Eqn (1.1): L = — ) a;;(x)0;; + >_ bi(x)0; + ¢(x),
where a;;(z) = —F,, , (u(z),0u(z),0?u(z),z), bi(z) = Fu,, (u(z), du(z), 0*u(z),z) and

iTj

c(z) = Fyu(u(z), du(z), 8%u(z),z) (the operator L is the Fréchet derivative of the map
u — F(u,0u,0*u,z) at u). By the conditions of the theorem, a;; € C*(Q) and b;,c €
L>(Q). Hence if Q is bounded, then the number A\; = inf Respec L is an eigenvalue of L
(the principal eigenvalue), it is algebraically simple and the corresponding eigenfunction
is strictly positive, modulo a multiplicative constant (see e.g. [NP] and [BNV]). If Q is
unbounded, then by conditions (1.4) and (a), L is self-adjoint, so the previous conclusions
still hold. (In that case one argues as follows. Approximating Q2 by bounded domains,
one shows that (L — A\)~! has a positive in (2 integral kernel, provided A < inf spec L.
Hence (L — \)~! is positivity improving (i.e. (L — \)~'u > 0 whenever u > 0, u # 0) for
A < inf spec L. On the other hand, by the variational principle for self-adjoint operators,
if 41 is an eigenfunction corresponding to A\; = inf spec L, then so are Rei, (or Ima)y)
and |¢1|. So we can take 11 to be real. By the positivity improving property established
above [11| > 0 and therefore 11 = =£|¢1|, which implies that A; is a simple eigenvalue.
Hence the lowest eigenvalue of L is nondegenerate and the corresponding eigenfunction is
strictly positive. (Cf. Theorem XIII.43 of [RSIV]).)

Now let us fix an axis in R™ and let 6 be the angle of rotation around this axis. Let
u be a solution to Eqn (1.1) which is not invariant under the rotations around this axis.

Then % satisfies the equation L& = 0, which is the linearization of Eqn (1.1) around u.

5



ou
tolv)
changes the sign. Hence by the result of the previous paragraph, 0, the eigenvalue of L

df = 0, so 2

27
Besides g—‘é satisfies the Dirichlet boundary conditions. Moreover / 56
0

corresponding to the eigenfunction %, is not the lowest point of Respec L. Thus u is not
a stable solution. This proves Theorem 1.1 in the scalar case. To prove this theorem in the
vector case one observes that due to the condition (1.3), the part — )" a;;(x)0;; +_ bi(x)0;
of the linearized operator L is diagonal. This and the condition F%; < 0 and Z 0 for a # 3
imply that L satisfies the conditions of Corollary 4.3 of Section 4. This corollary then can

be used instead of the conclusion of the previous paragraph. A

Conjecture. Let L be a uniformly elliptic operator, as in the beginning of this section,
in a domain € with the Dirichlet boundary conditions on 9 (U{oco}, if © is unbounded).
Let \; = inf Respec L, where spec stands for the L?-spectrum, is an eigenvalue of L.
Then )\; is algebraically simple and the corresponding eigenfunction is positive, modulo a
multiplicative constant.

As was mentioned at the beginning of this section this conjecture is proven in the case
when (2 is bounded or L is self-adjoint. Thus the statement remains open for {2 unbounded
and L non-self-adjoint. If the conjecture is valid, then condition (1.4) is superfluous and
condition (c) of Theorem 1.1 can be weakened to the condition

(c/) there is a > 0 s.t. 8%u € (z)*L*(Q) for |a| < 1.

Indeed, if condition (c’) is satisfied, pick b > a. Then the operator L' = (z)~°L(z)?,
where L is the linearized operator for Eqn (1.1) given at the beginning of this section, has
the desired properties pointed out above. Moreover, it satisfies spec L' = spec L and can

be used instead of L in the proof of Theorem 1.1.

3. Proof of Theorem 1.2

Let u be a stable solution to (1.1) and let ¢;, j =1,..., %m(m — 1), be the generators

of the unitary representation of SO(m) on the space R™. Due to the conditions of the
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theorem, {;u, j =1,...,3m(m — 1), satisfy the linearized equation L = 0. Hence by the
argument presented in the proof of Theorem 1.1, Span{ﬂju lj=1,..., %m(m - 1)} is a
one dimensional space. For m > 3, this contradicts the fact that £;,i=1,..., %m(m —1),

generate the algebra of SO(m). Hence u must be the identical zero. A

4. Perron-Frobenius Theory

In this section we adapt the theory, which goes back to O. Perron and G. Frobenius and
was developed by M.G. Krein, M. Rutman, J. Glimm, A. Jaffe, B. Simon and others (see
[GJ, RSIV] and [Z] for reviews) to the situation at hand. We begin with some definitions.

The statements below are made modulo sets of zero measure.

Let Q be a domain in R™. For ¢: 2 — R™ we denote ¢ > 0 iff p; > 0V i and ¢ #Z 0.
If, in addition, ¢; Z 0 or ¢; > 0 Vi, then we use the notation ¢>0 or ¢ > 0, respectively.
Note that in the scalar case the notions ¢ > 0 and ¢>0 coincide. An operator T acting on
L?(Q,R™) is said to be positivity preserving (resp. improving) iff T > 0 (resp. T¢ > 0),
whenever ¢ > 0.

Elementary examples of positivity preserving operators are T' = diag(T;), the diag-
onal matrix-operator with the diagonal entries 77,...,T,,, where the T;’s are positivity
preserving in L?(€2,R), and an operator of multiplication by m x m matrix whose matrix
elements are non-negative. We combine these two examples to obtain a less obvious one.

Let
L=-— Z Qij (LL‘)&LJ + Z bl(:c)al + C(ﬂ?) (41)

on L?(2,R™) with the Dirichlet boundary conditions, where the first two terms on the
r.h.s. are diagonal w.r. to R™ and c¢(z) = (cap(®)) is a real, symmetric m x m matrix.
We assume that b;(z) and cag(z) are bounded, and a;;(z) is uniformly elliptic: 6~%|¢|* >

> aij(x)&&; > 6|¢|? for some § > 0. Of course, L is bounded from below. Let A\; =
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inf Respec L. For A < A\; we consider the operator
T = (L-)N"".

This operator is bounded. In fact, we have
Proposition 4.1. (i) If cop(x) < 0 Ya # (3, then T is positivity preserving. (i) If
cap(z) < 0 and cop(z) # 0 Va # B, then T is positivity improving.

Proof. We rewrite L as L = Lo — U(x), where U(x) is defined by Uag(z) = —cap()
Va # 3 and Uye(x) < 0 and bounded but otherwise arbitrary V « and

L() = d1ag(Ha) with Ha = — Z Qij (:1:)8” + Zbl(m)&b + Ca(.’IJ) s
ca(z) = caa(z) + Usa(z). By Theorems XII1.44 and XII1.45 of [RSIV] (H, — A)~! is
positivity improving on L?(£2,R) for A < inf Respec H,. Consequently, (Lg — \)"1¢ > 0
whenever >0, provided A < inf RespecLy. On the other hand obviously, Uy > 0
(respectively, Up>0) for ¢ > 0 if U, > 0 (respectively, if U,s > 0 and U, Z 0) Va, 3,
i.e. in the case (i) (respectively, case (ii)). Hence the operator K = (Lg — \)~'U is
positivity preserving in the case (i) and positivity improving in the case (ii). Hence so is
the operator T' due to the expansion
T =) KM Ly—\)"",
n=0

which converges in norm for A sufficiently negative. A

Now an elementary extension of Theorem XIII.44 of [RSIV]| (see also the proof of

Krein-Rutman theorem [Z]) yields the following result.

Theorem 4.2. Let T = (L — pu)~!, u < inf Respec L, be positivity improving and let

sup RespecT be an eigenvalue. Let A be an eigenvalue of T' with an eigenfunction . Then
P >0 <+ X = sup RespecT'.
Moreover, sup RespecT is a simple eigenvalue.

Combining this theorem is Proposition 4.1, we arrive at
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Corollary 4.3. Let L be the operator defined in (4.1) and let inf Respec L be an eigen-

value (which is always true if Q is bounded). Assume L satisfies the condition of Proposition

4.1(ii). If X is an eigenvalue of L and v its corresponding eigenfunction, then

¥ > 0 <+ X = inf RespecL .

Moreover, inf RespecT is a simple eigenvalue.
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