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This selectivereviewis written asanintroductionto the mathematicatheoryof the
Schralingerequationfor N particles.Characteristidor thesesystemsarethe clus-
ter propertiesof the potentialin configurationspace,which are expressedn a
simple geometriclanguage.The methodsdevelopedover the last 40 yearsto deal
with this primary aspectare describedby giving full proofsof a numberof basic
andby now classicakesults.The centralthemeis theinterplaybetweerthe spectral
theory of N-body Hamiltoniansand the space-time and phase-spacanalysisof
boundstatesand scatteringstates. © 2000 American Institute of Physics.
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[. INTRODUCTION

The quantumN-body problemhasbeenposedsince1926in a precisemathematicaform: the
Schralingerequationfor N particlesinteractingpairwiseby two-body potentialswhich vanishat
infinity. Togetherwith the generalprinciplesof quantummechanicghis equationrepresentshe
simple, unifying basisfor understandingll forms of nonrelativisticmatterfrom the atomicpoint
of view. Of coursespin and statisticsas well asthe couplingto electromagnetidields mustbe
includedto substantiatehis claim, but theseaspectswill not be consideredn our review.

Thetheoriesof atoms,moleculesandsolidsevolving from this basisdid not solvethe N-body
problem (for N>2) in any mathematicalsense,but from the point of view of physicsthey
achievedmuchmore.Dueto its classicaflavor the Schralingerequationlendsitself beautifully to
heuristicsimplifications,thusleadingto intermediatemodelsdescribingparticularsituations.This
processs of coursenecessaryo reducethe quantitativecomplexity of the underlying“exact”
theory to human(or machine proportions,not only for doing computationsput also for under-
standingthe results.Someof thesemodeltheorieshavealso beenstudiedfrom the mathematical
point of view, but againthis is not a topic of our review.

The mathematicatheoryof N-body quantumsystemsgresentedhereis the resultof acomple-
mentaryeffort, essentiallyover the last 40 years,to derive somebasicdynamicalpropertiesof
N-body systemsdirectly from the Schralinger equationand from generalassumptionson the
interactions An overviewis presentedy the following condensedistory:

1926 Schrodinger: The time-dependenSchralingerequationfor N-body system$*

1932 von Neumann: Abstract Hilbert spaceand the mathematicalfoundationsof quantum
mechanic$?

1951 Kato: Self-adjointnessindlower boundfor a large classof N-body Schralinger Hamilto-

nians including Coulomb system$? Thesesystemsthereforefit into von Neumann’sabstract
frameworkwith all its methodsandresults(dynamicsdescribedy a one-parametaunitary group,

spectraltheorem,etc).

1959 Hack: Existenceof scatteringstatesfor any prescribedasymptoticmotion of independent,
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boundfragmentsin the caseof short-ranggotentials(falling of fasterthanr ~*).*° The conjecture
standsthat thesescatteringstatestogetherwith the bound statesspanthe entire Hilbert space
(asymptoticcompletene$9).

1960 Zhislin: Determinationof the essentiabpectrumof atomicHamiltonians'® In the context
of generalN-body systemsthis result was rediscoveredndependentlyby Hunzikef’” and van
Winter1%4 It forms the basisfor all variational methodsappliedto the discretespectrum.For
example,the energy spectrumof atomsand positive ions below the first ionization threshold
consistsof infinitely manyisolatedeigenvaluef finite multiplicities.

1963 Faddeev: The first mathematicatheory of three-bodysystems?® basedon a systemof
coupledintegral equationsfor the three-bodyGreen’sfunction (Faddeevequationg which be-
comesof Fredholmtype aftera numberof iterations.This approactwaslaterextendedo arbitrary
N by Yakubowsky’ and Hepp#® but its power s limited by supplementarassumptionson-
cerningthe spectralpropertiesof all subsystem®f lessthanN particles.

1969 Ruelle: Ergodic space-time characterizatiorof bound statesversuscontinuumstate$?
simplified and generalizecby Amrein and Georgescliand by Enss?®

1970 Efimov: In contrastto the two-bodycase three-bodyHamiltonianswith short-ranggoten-
tials canhavean infinite numberof discreteeigenvaluesEfimov effect).?®2* The first mathemati-
cal treatmentis dueto Yafaev!!3

1971 Lavine: Asymptoticcompletenessf N-body systemswith purely repulsivepotentials?®:°
The first time-dependenproof using a positive commutatorargument(developedin generalby
Putnani® and Katc®®).

1971 Balslev, Combes: Application of spectraldeformatioft to N-body Hamiltonians with
dilation-analyticpotentialst® This methodrevealsthe generalstructureof the essentiakpectrum
of H (thresholdsembeddecigenvaluesabsencef singularcontinuousspectrum), andprovides
the basisfor a theory of resonance®

1972 lorio, O Carroll: Asymptotic completenesf N-body systemsin the limit of weak
potentials’’ A simple perturbativeapproactusing the Dyson expansion.

1973 O’ Connor: Isotropic exponentialboundsfor N-body eigenfunctionsn the discretespec-
trum, with an exponentdeterminedby the massesand the energy difference to the lowest
threshold’® Later generalizedn the dilation-analyticcaseto nonthresholceigenvaluesmbedded
in the continuousspectrum-* whereabsencef positiveeigenvaluesanbe provedin a variety of

casegseee.g.,Ref. 81, Vol. IV, Thm. XIIl. 61).

1977 The adventof “geometric” (configurationspace methodsof spectralanalysisand scat-
tering theory8:2597.17.8 Thesemethodscombinethe local analysisof a Schralinger Hamiltonian
(as a partial differential operatoy with the global (operatoy analysisin a very effective way,
leadingto essentiakimplificationsand new results.

1978 Deift et al.: Anisotropic exponentialboundsfor N-body eigenfunctionsin terms of the
energy,all thresholdsand the masses! A conciseform of this resultis later given by Agmor?
(Agmon distance.

1978 Enss. A shortinspiring proof of asymptoticcompletenes$or N=2, using only Ruelle’s
theoremand the propagationpropertiesof free wave packets?® later extendedto N=327 This
proof marksthe turning point from geometricto phase-spacanalysis.

1981 Mourre: Mourre’s inequalityfor N=3,”® soonextendedo generalN by Perry, Sigal and
Simon’® Mourre’s inequality establisheshe structureof the essentiakpectrumfor very general
interactionslt alsoexhibitsthe strict positivity of the virial in any sufficiently narrowenergyshell
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in the continuousspectrumwhich is separatedrom thresholdsand eigenvaluesThe resulting
propagatiorestimate(local decay playsa key role in the proofs of asymptoticcompleteness.

1982 Froese, Herbst: Exponentiaboundsfor eigenfunctiondelongingto embeddednonthresh-
old eigenvaluesand absencef positive eigenvalues! supplementedy Perry’® The proofsare
basedon Mourre’s inequality.

1987 Sigal, Soffer: The first generalproof of asymptoticcompletenesdor arbitrary N and

short-rangegpotentials’® The proof restson the constructionof a setof phasespaceobservables
é(x,p,t) which have locally positive commutatorswith H and which control the asymptotic
propagatiorinto the possiblescatteringchannels.

1990 Graf: A muchsimplerproof of the Sigal-Soffer theorent® Theimprovementesultsfrom
the constructionof new propagatiorobservablesvhich arebettertunedto the geometryof N-body

configurationsA variantof this constructionis introducedlater in the proof given by Yafaev!!®

1993 Derezinski: Proof of asymptoticcompletenes$or long-rangepotentials(falling off faster
thanr ~#, u=v3—1).2° This proof was preparedby preliminary resultsof Sigal and Soffer%%

who give anindependenproof for the Coulombcaseu =1

This shorthistoryis necessarilyncomplete,andsois our review. As a rule we only describe
resultswhich havebeenobtainedfor generalN andfor generalclasse®of potentials.Not covered
are,in particular,the Faddeewtheoryandits generalizationd>!"“%he manybeautifulresultsfor
Coulomb systemsincluding the stability of matter’%3° and N-body systemsin externalelectric
and magneticfields, e.g.,Refs.44, 8, 120, 36, 37,67, 1, and 101. On the otherhand,we present
someof the methodsoriginating from N-body theoryin abstractform sincethey havea wider

rangeof applicability: e.g.,spectraldeformation,resonancedyigherorder Mourre theory.

II. BASIC DYNAMICS

In this sectionwe discusstwo fundamentapropertiesof Schralingeroperators
H=p?+V(x) onH=L?(X), (2.1

whereX is a Euclideanspacexe X and p>=—A. The first oneis Kato’s celebratectheorem
which statesthat

H:H*>E0>_Oo

for alarge classof potentialsincluding N-body systemswith Coulombinteraction$® This result
may be regardedas the mathematicafoundationof nonrelativisticquantummechanicsit shows
that the standardmodelsof atomsand moleculesfit into von Neumann’sabstractHilbert space
theory of quantumsystemsin particular,the Schralingerequation

i =Hy
generatesa unitary group U,=e "~ ': y;,— ¢, describingthe time evolution of any initial state
o€ H for all te R. Moreover,H hasa spectralrepresentatioid = [\d E, whichin turn defines
the energydistributiond(y,E, ¢) for any statey (i.e., any ¢ e H with ||||=1) asa probability
measureon the spectruma(H) of H. The resultthat the energyH hasa finite lower boundE,
explains,e.g.,the stability of atoms(evenbeforeinvoking the Pauli principle). In fact, this lower
boundis obtainedin the strongerform

p’<aH+b (2.2



J. Math. Phys., Vol. 41, No. 6, June 2000 The quantum N-body problem 3451

for someconstantsa,b dependingon V. This upperboundfor the kinetic energyp? in termsof
the conservedotal energyplaysa fundamentatole. In elassical mechanics (2.2) holdsonly if the
function V(x) is boundedfrom below. Thenthe inequalities

IX|<R, (x,p)<E

definea finite volumein phasespace.Sincethe canonicalflow (xq,p0) — (X;,p;) generatedy

H(x,p) isvolumepreservingLiouville’s theorem), it follows thatalmostall orbitst— (x, ,p;) fall

into two classes:either x, remainsboundedfor all t, or x, becomesunboundedin both time

directionst— +« (“captureis a procesof probability zero”). This theoremis dueto Schwarzs-
child (see,e.g.,Ref. 85). Its guantum analog, given by Ruelle®? is the secondfundamentatesult
we wish to discuss.In the quantumcase(2.2) implies that the set of statesy satisfying the

inequalities

(4 Ix|P)<R, (¢y,Hy)<E

is compactin H, and Liouville’s theoremis replacedby the unitarity of the flow U, in H. As a
result’H splits into two U,-invariantorthogonalsubspaces

H:HBEB HC .

Here’Hg is the subspacef boundstatesspannedy the eigenvector®f H. An orbitt— i, in Hg

is characterizedy the conditionthat, for any e>0,x stayswith probability 1 — & in somefinite

ball | x| <R(e) for all t. Hc="H g is the continuousspectralsubspacef H. For anorbit t— i, in

Hc the probability to find x in any finite ball |x|<R attime t vanishesn the time averageover
bothtime directions— o <t<0 and0<t< +. This generalresultsetsthe stagefor the further
analysisof N-body systemswherewe will eventuallyarrive at muchsharperstatementgoncern-
ing the localizationof boundstatesand continuumstates.

A. Self-adjointness

The constructionof self-adjointHamiltoniansof the type (2.1) is a well-developedart (see,
e.g.,Ref. 81, Vol. Il). Herewe only recall the original constructionof Kato$3

Definition: A Kato potential on X is a real function Ve Lﬁ,C(X) which, as a multiplication
operator on L?(X), satisfies an estimate

Vel <alp?sl+ Byl 2.3

for any >0 and all e Cj(X).
Theorem 2.1:% If V is a Kato potential on X, then H=p?+V is sef-adjoint with domain
D(H)=D(p?) and bounded from below. Moreover, p? is H-bounded with a bound

Ip?yl<(1—a)"*(|Hyl +Bla)| ¥l

Proof: V is aclosedoperatoron its naturaldomain.SinceCgy (X) isacoreof p?, (2.3 extends
to all e D(p?). ThusH is definedasa symmetricoperatoron D(p?), where

); 0< a<. (2.4)

z-H=[1-V(z-p?) 'l(z—p? 2.9

for Re@)<0. From (2.3) we find |V(z—p?) Y| <a+ B(a)|Re@)| <1, if we choosea<1 and
|Re@)| sufficiently large. Then(2.5) showsthatRanz— H) =L?(X) andthatz— H hasa bounded
inverse.Thustheresolventsetp(H) of H containsa left half-plane,which provesthefirst part of
the theorem.Equation(2.4) follows from (2.3). O
Hereis a summaryon Kato potentials:
Theorem 2.2: (a) A real function V € LP(X) is a Kato potential if p=2 and2p>dim(X). (b)
Let X=X,® X, be an orthogonal decomposition of X with adapted coordinates x=x;+ X, . Sup-
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pose that V depends only on x;:V(x)=V(x4). Then V is a Kato potential on X if and only if it is
a Kato potential on X;. (c) The Kato potentials on X form a real vector space.

For a proof of (a) seeRef. 81, Vol. Il, Thm.X.20.(b) and(c) are elementary.

Example: V(x)=|x| ! is a Kato potentialon X=R?3 sinceit is the sum of an L2-function
[which is Kato by (a)] anda boundedfunction. Let X=R3N with coordinates,,... x,€ R3. By
(b) the potentialsV;,= |x; —x,| " (i#k) areKato potentialson X. By (c) this is alsotrue for any
reallinear combinationof the potentialsV;, . Thereforethetotal Coulombpotentialof a systemof
N chargedparticlesin R3 is a Kato potentialon R®N. Accordingto (b) this remainstrueif we fix
the center-of-mas®y restrictingthe configurationspaceR3N to the subspace{xlEﬁ': 1My =0}
wherem, is the massof the particlek.

B. Bound states and continuum states

Lemma 2.3: Suppose that H is a self-adjoint operator on L2(X) satisfying (2.2) for some
constants a, b. Let f e L*(X) with f(x)—0 as |x|— 0. Then the operator

F(x)(z—H) ! is compact (2.6)

for any z in the resolvent set p(H). We will refer to this by saying that H has the local compact-
ness property.

Proof: We useCartesiancoordinatesx= (x4, ...,X,) in X andthe correspondingnomentum
operatorsp=(p,....pn), Px=—idl x,. Let ge L*(X) with g(x)—0 as |x|—. Thenthe op-
eratorf(x)g(p) is compact.This follows by observingthat f(x)g(p) is a normlimit of Hilbert—
Schmidtoperatorsf,(x)g,(p), obtainedby setting f(x) and g(x) equalto zerofor |x|>n and
letting n—oo. [Notice that f,(x)g,(p) is an integral operatorwith the square-integrabl&ernel
K(x,y)=f,(X)8,(x—y), whereg, is the Fouriertransformof g.] As a norm limit of compact
operators(x)g(p) is compactBy (2.2) theoperator(1+ p?)(z—H) ! is boundedThereforethe
productf(x)(1+p?) ~*(1+p?)(z—H) ! is compact. O

Self-adjointnesaindthe local compactnespropertyof H arethe only ingredientsof Ruelle’s
theorem:

Theorem 2.4:327%6 Qppose that H=H* on L?(X) has the local compactness property (2.6).
Let Hg be the subspace spanned by all eigenvectors of H, and Hc="Hyg . If xr(X) is the char-
acteristic function of some ball |x| <R, then
iHt

peHge lim|(1—xp)e 'Me=0 wuniformy in 0st<o; (2.7

R—

t .
e Hee lim t‘1J ds||xre ""Sy|?=0 for any R<oe. (2.8
0

t—x

ReplacingH by —H, we obtainthe analogougheoremfor negativetimes.We alsonotethat
two statese and i with the space-time characteristiq2.7) and (2.8) are orthogonal:

(¢,9)=0. (2.9

Hty,—0 for somesequence— . Thuswe canmake

In fact, (2.8) implies yge™

(e,)=(e Mo, xre My +((1-xr)e Me,e My

arbitrary small by first choosingR andthent large enough.
Proof of Theorem 2.4: Let H be a self-adjointoperatoron a Hilbert spaceH andsupposehat
zerois not an eigenvalueof H. By the meanergodictheorem,

t )
lim rlf dse MSy=0 VyeH. (2.10
0

t—o
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(This follows for ¢y=H ¢ by explicit integration,andtheseys aredensein H sincezerois notan
eigenvalueof H.) Now supposdhatH hasno eigenvaluesThenzerois not an eigenvalueof the
operatorH®1—1®H on H®H (a consequencef the spectraltheoren), so thatby (2.10

t ) )
0=lim t‘ljods((p@) e My eetsy)

t—x

t .
=lim t_lfods|((p,e_'Hszp)|2V(p,lﬂe'H. (2.12)

t—ox
Now let H=H* bearbitraryandsupposehatK(i + H) ! is compactfor someboundedoperator
K. Thenwe claim that

t .
lim rlfodsnK e-iHsy|2=0 (2.12

t—oo

for any vector ¢ in the continuousspectralsubspacé- of H. Sinceit sufficesto provethis for
the densesetof vectorsy= (i + H) ¢, € Hc, we mayassumehatK itself is compactThenK
is the normlimit of finite rank operatorswhich leavesusto prove (2.12) for operatorK of rank
one:K e MSy=(u,e ""Sy)v; u,v e H. Sinceye Hc we canchooseu e He. Then(2.12) fol-
lows from (2.11) becauseHd hasno eigenvectorsn H¢. In the contextof (2.4) this provesthe
direction = of (2.8), sincexg(i+H) ! is compact.On the otherhandthe direction = of (2.7)
holds trivially for any eigenvector ¢ of H and thus for any ¢eHg. The opposite
directions < of (2.7) and(2.8) now follow from (2.9). O

lll. N-BODY SYSTEMS

A systemof N particlesin R? with pair-interactiondgs describecby the Hamiltonian

N pz 1,..N
k
H=2 —+ Vik(Xi —Xy), 3.1
2 om, ;k k(X —Xy) 3.1

with V;(x)—0 as |x| —. Fromthis standardcasewe extractthe following basicnotions:

A. Configuration space

The configurationspaceX of an N-body systemis a Euclideanspacewith scalarproduct
denotedby x-y. In the caseof (3.1), regardedn the center-of-mas$CM) frame:

x eR% Y, mx,=01;

XE|x=(x1,...,xN)

XY=, my(X- Yi)g3- 3.2

Here x-x=3%2 is the classicalkinetic energy,and p=x is the momentumconjugateto x. In
quantummechanics,

H=1ip?+V(x) on L*X), 3.3

wherep=—iV andp?=— A havethe usualform in Cartesiancoordinatesnot particle coordi-
nates of X.
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) CM(1234)

() =(x5),

CM(34)

4

FIG. 1. The coordinatest, andx?.

1. Channels

In X thereis a distinguishedfinite lattice L of subspacea,b, ... (channels L is closedunder
intersectionsaand containsat leasta={0} anda=X. In the caseof (3.1) the channelsorrespond
to all partitionsof (1,...N) into clusters.For example,f N=4:

partition channel

(12)(34) > a={xX|x1=X7:X3=Xy}. (3.4
In generalthe partial orderingof L is definedby
a<b—aCbh; a#b. (3.5
For eacha e L thereis an orthogonaldecomposition:
X=ada' : x=x,+x2. (3.6)

This correspondsgo the introductionof CM-coordinatesSeeFig. 1 for the example(3.4).
Therelationp?=(p,)?+ (p?)? expressethe familiar decompositiorof the kinetic energyinto
CM-partsandinternal partswith respecto the clusters.

2. Intercluster distance

The basic feature of N-body systemsis that they can split into widely separatedalmost
independentlusters. As a measureof the separatiorwe might usethe minimal distanced(x) in
R3 of the clusters,e.g.,

da(x)= min  [x—Xx 3.7
ie(12);ke(34)

in the example(3.4). However,we preferto expresghe separationin termsof the geometryof X.
Somereflectionshowsthatd,(x) =0< xe b,bNa<a.

Figure2 showsthe unit spherein X, intersectedy two channelsa,b with bNna=c¢<a. This
leadsto the definition of the intercluster distance

|X|a= min |x®| for any a>{0}. (3.9
bna<a

In the example(3.4) onefinds

12

1 my
| — Xyl

m; + my

|X|la=  min
i e(12):ke(34)
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FIG. 2. Interclusterdistance.

The setof all configurationst € a with |x|,>0 is given by

a*=a\ U ¢ (3.9
c<a

(empty for a={0}), and thesesetsform a disjoint coveringof X\{0}. We note that |x+ sy|,
—oo as s—o for thetranslations

x—Xx+8y, seR,yea*. (3.10

TDesetranslationseparatehe clustersin channela without affectingtheir internal configuration
x2.
B. Hamiltonians
We assumehat for eacha>{0} the potentialV(x) hasthe clusterproperty
V(x) =VHXT) +1a(X);
(3.11
L(x)<f([x])) =0 & [x|;—o=.
In particularl ;=V for a=X. For a={0} we definel ,=0. In the example(3.4),
VA=V 1,4+ Vag:  Ta=Vig+ Vit Vgt Vo,
Correspondingo L2(X)=L2(a)®L2(a"), we write
H=H,+1,;
Ha=3(pa)?®1+10H? (3.12
H%=3(p*)%+V3x®) on L%a').

HereH, describeshe dynamicsof the systemof noninteractingclusters,andH? describegheir
(joint) internaldynamics.

1. Conditions on the potential

The rate at which 1,4(x) [and later also derivativesof 1,4(x)] vanishesas |x|,—> will be
essentiafor many dynamicalaspectsin additionto the clusterpropertiessomeglobal condition
is requiredto makeall the Hamiltonians(3.12 self-adjoint. For the purposeof this review we
assumehat V is a Kato potential. This propertyis automaticallyinheritedby the potentialsV2.
Let

Ts: $(X)—¢(x—sy) 3.13
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z 0=X
- X G (H)
|

1

o, (H)

ess

Yy
| Sise (H)

FIG. 3. Discreteand essentiakpectrumof H.

be the unitary translationoperatorcorrespondingo (3.10. By (3.11) the potential V2 is then
determinedby

Vay=lim T_VTgp Ve CH(X). (3.14

$—©

Sincep? is translationinvariantit follows that V3(x?) is a Kato potentialon X andthuson a*.
Thereforeall the Hamiltonians(3.12 areself-adjointandpossesshe local compactnesproperty.
In thefollowing we will notreiteratethesebasicassumptionenV(x). All of theresultswe report
havebeenestablishedor substantiallylargerclasse®f potentials.For a particularlylucid discus-
sion of this aspectwe referto Ref. 39.

2. Induction principle

As aresultwe havearrivedat a simple mathematicatiefinition of N-body systemsnvolving
only threeingredients:

(1) a configurationspace X,
(2) a lattice L of channelsaCX, (3.15
(3) conditionson I4(x).

In this senseeachHamiltonianH? also describesan N-body systemwith reducedconfiguration
spacea’, with channeldNa’, b=a andwith correspondingnterclustempotentials,(x?), which
we call a subsystem. Any propositionP derived from (3.16) can thereforebe establishedby
induction on the lattice L. To begin with, P is verified in the trivial casea=X:H?®=0 on
L2({0})=C. ThenP is provedfor a={0}:H2=H, underthe induction hypothesigthat P holds
for any H? with a>{0}. Thisinduction in subsystemsis in fact moreconvenienthananinduction
in the particle numberN.

C. Discrete and essential spectrum

Herewe provethat the spectrumo(H) is of the form in Fig. 3:

S=minX,; ,=min(c(H?)).

a>{0}

3, is the lowestenergythresholdfor breakingthe systeminto independenparts.Therefores(H)
containsthe continuouspart[2,»). Lessobviousis the fact that H hasonly discrete spectrum
below 3. By definition, the discretespectrumoy,,(H) of a self-adjointoperatoH is the setof all
isolated eigenvalues of finite multiplicity (isolatedfrom the restof the spectruni. The essential
spectrum of H is the complement

Tes§ H)=0(H)\ogisd H). (3.16

Theorem 3.1;47104118

O'ess(H):[21°°)- (3.17
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Proof: Sep 1: [3,2)Co(H). By (3.12 o(H,)=[3,,%) for a>{0}, sincethe kinetic en-
ergy makesthe spectrumcontinuous.To prove that o(H,)Co(H), let Aeo(H,). Then||(A
—H,) ¢ <e for any e>0 andsomey e Cy(X), | ¢l|=1. By (3.149

HTsp—HTsy ($—)

in norm. Thereforel|(A —H) Tgy/|| <e for somes, which showsthat\ e o(H).
Sep 20 oec{H)C[3,°). We introducea partition of unity on X, i.e., a finite family {j,} of
real C*-functionson X with the property

Za jA(x)=1. (3.18

ThenH canbe decomposedhto pieceslocalizedin the supportsof j, plus a localizationerror:
e 1 N o 1 .12
HZ; JaHJa'*'E; [Jav[JmH]]:; JaHJa_EEa: |VJa| . 3.19

In our casea labelsall channelsa>{0}. Thenthe sets
S,={xe X| [x|=1 ;|X|ﬂ>0}

form anopencoveringof the unit sphereS of X. Thereforethereexistsa partitionof unity {j,} on
S with supp(j,) C S, . Sincethesesupportsare compactit follows that

|X|a=£>0 on supp(j,) Va>{0}.

Next, the partition of unity {j,} is extendedfrom S to the region |x|>1 by setting j(x)
=ja(x|x|~1). In theregion|x|<1 we chooseanarbitrarysmoothextensiorsatisfying(3.19. The
resultingpartition on X hasthe properties

Ja(AX)=ja(x) for |x|=1A=1;
(3.20
|X[.=e|x| for |x|=1,xesupp(j,) -
Thereforethe functions|Vj(x)|2 andj l.(X)j, vanishas|x|—o: as operatorghey arecompact
relativeto H. As aresult

H= Z JaHajatK
a>{0}

with K compactrelativeto H. By a theoremof Weyl (Ref. 81, Vol. IV, Thm. XIIl. 14)

O'es£H):0'ess< a;()} jaHaia) . (3.21)

SinceH =3 it follows with (3.19 thatthe operatorappearingon the right is boundedbelow by
3, andwe concludethat oo { H) C[2,). O

IV. DISCRETE SPECTRUM
A. Exponential bounds for eigenfunctions

We considera discreteeigenvalueE< 3, of H anda correspondingpoundstatewavefunction
#(x). In the two-body case(whereX, =0) (x) hasa universalexponentiabound

F)=x,=x,| = 2mE
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in the following sensefor any a<1 thereis a constantC, suchthat

| h(x)|<C e” ™.
The reasonwhy we cannotset a=1 is exemplifiedby the polynomial factorsin the hydrogen
wavefunctions.In this sectionwe constructthe analogousxponentiaboundin the N-body case:

a positivefunction f(x), homogeneousf degreel, determinedmplicitly by the energyE andby
the thresholds

3.=min(c(H?); a>{0}.
Although ananalyticexpressiorof f(x) is not known,weakerboundscanbe given explicitly. All
theseboundsareexpressedby the Euclideanmetric (3.2) which describegheir dependencen the
masses.

Theorem 4.1: Let Hy=Ey,E<3. If f(x) is homogeneous of degree 1, and has the Lips-
ehitz properties

[FOO=F(Y)[<Nalx=y[; Na=V2(2,—E) (4.)
for all aeL,a>{0}, and all x,y ea, then f is an exponential bound for ¢ in the sense that
efyelL*(X) for any a<l. 4.2

In particular, the pointwise supremumf_of all these exponential bounds f is an exponential bound.

The boundfis determinecby the energyE andthe thresholds®., . Weakerboundsobtained
from Theoremd4.1 are also useful, especiallythe isotropic bound

Fx)=[x|V2(X ~E) 4.3

dueto O’Connor’® In generalthe boundfwill be highly anisotropicwith rangein

x| V2(3 - E)<f(x)<|x| /- 2E.

Someexamplesarefoundin Ref. 17, but a generalexplicit form offis not known. Agmor? has

expressedhe boundfasa geodesidistancein termsof the following Riemanniammetric on X.
To anyx e X thereis associate@ unigueminimal channelm(x) e L containingx:

m(x)= M a. (4.4

asx
Expressedn particlecoordinategx.,... Xy): two particlesi,k belongto the sameclusterof m(x)
exactlyif x;=x,. We remarkthatm(x)<m(y) for all y in someneighborhoof x. The Agmon
metric on X is definedin termsof the Euclideanmetric (3.2) by the line element

d?=2(3 iy — E)dX?, (4.9

where,by the remarkabove the coefficientfunction (X ) — E) is lower semi-continuoun x. A
pathpCX, givenby afunctionx(t) on 0<t<1, hasthe Agmon length

1
s(p)= fo dt N ey | X(1)]
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with \, definedby (4.1). Since\(x(t)) is semi-continuousn t this is well definedfor square
integrablex(t). The Agmondistanced(x,y) betweernx andy is theinfimum of s(p), takenover
all pathsp joining x,y. We referto Ref. 13 for a proof that this infimum is a minimum, and for

a discussiornof Agmon geodesics.

Theorem 4.2:2 The exponential bound f_given in Theorem 4.1 isf_(x) =d(0,x)=p(x).
Proof: Evidently p(x) is homogeneousf degreel. By the geodesidriangleinequality,

[p(X) = p(y)[<d(x,y)<\a|x—Y|

for x,yea. This proveSpsf To showthe conversewe choosea pathp from 0 to x with s(p)
<p(x)+e. Approximatingx(t) by a stepfunctionin L?-sensewe seethatp may be takenasa
polygonof straightlines p4,...,p,. For eachp, we define

ay= m acl.
aspy

Then\ = Na, for all x e py, with the possibleexceptionof a single point (a straightline pta
canintersecta only in onepoint). Therefores(py) =\, |pyl, Where|py/ is the Euclideanlengthof
px. Ontheotherhand,(4.1) implies|Af|< )\ak|pk| for theincrementA f, of f alongp, . Therefore
FO)=ZpAfy=<Zyq, [ Prl = S(P)<p(x) +&. 0

We now return to the derivation of Theorem4.1. Insteadof (4.2) we will only prove the
L2-bound:

eyel?(X) for any a<1. (4.6)

Sincef is uniformly Lipschitz, the L*-bound(4.2) thenfollows by a generalargumentgiven in
Ref. 17. The basictool for estimatingexponentiatails of eigenfunctionds simple:

Lemma 4.3: Suppose that Hy=E. Let J, fe C?(X) be non-negative with bounded deriva-
tives, and let supp(VJ) be compact. If

J(H= 3|VFI?—E)I= 617 4.7
for some 6>0, then
e’ 3y < s e'[H,3]y. 4.8

The hypothesisallows f(x) —«~ asx— . The bound(4.8) is finite, since f is boundedon
supp(VJ). Typically, J will be a smoothedcharacteristidunction of a set|x|>R. Then (4.9
implies exp(f )y e LA(X).

Proof: Supposedirst that f is boundedandlet

Hj=e'He '=H— ;|V_f|2+ %(V_f-p+p-Vf).

Then(H;—E)u=0 for u=e'y, so that (4.7) implies
8l 3ull>< Re(du,(Hy;—E)du)<|dul [I[Hy,3]ul,

which proves (4.8). If f is unboundedwe replaceit by f,=f(1+&ef)"1,g>0. Since |Vf,]
<|Vf|, (4.9 holdsfor f, uniformly in &, andextendsto f in the limit £—0. O
The next stepis to prove a smoothversionof Theorem4.1:
Lemma 4.4: Theorem 4.1 holds if the Lipschitz condition (4.1) is replaced by the stronger
differentiability condition
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FeC?(X\{0}); |VFX)[*<2(Zmp—E) (4.9

for all xe $= unit sphere of X.
Proof: Let g=af,a<<1. Then

|Vg|2$2(2m(x)_E_3) (4.10
for somee >0 andall xe S. Eachy € $ hasa neighborhoods,C S given by
SyE{xes|2|x|m(y)>|Y|m(y);|Vg(x)|2<|Vg(Y)|2+8}r (4-11)

wherewe haveusedthe definitions (3.8) and (4.4). As in the proof of Theorem3.1, we pick a
finite covering{S,} of 8, andthenconstructa partition of unity {j,} on X with the properties

supp(jy) CSy; jy(x)=jy(x/|x|) for [x|>1.

From (3.20 we obtain
1 ] 1 o1 X
Ho 3 IVal-E=3 1| - IvaE |l 3 S (73,2
y y

By construction,|Vj,(x)|—0 and I y,)jy(X)—0 a x—. Let J be a real, smooth,bounded
function supportedn {|x|>R}. Using (4.10, (4.11) andH,=3., we find

3 H-Ziver—Ea=( S —or) |22
Taking R sufficiently large,we concludefrom Lemma4.3 that e9 € L%(X). ]
The proof of Theoremd4.1is by regularization;f canbe approximatedy a smoothexponen-

tial boundaccordingto Lemma4.4. Sincethis regularizationis somewhatechnical,we refer to
Ref. 53.

B. The number of discrete eigenvalues

1. Infinite discrete spectrum

For N=2 thediscretespectrumof H is finite if the potentialV(x) hasshortrange whereasa
long-rangeattractivepotentialwill alwaysproducean infinite humberof boundstatesbelow the
continuousspectrum.The borderline betweenshort- andlong-rangepotentialsis markedby the
asymptoticbehaviorV(x) ~|x| #(|x|—) with u=2, since|x| 2 scaleswith x like the Laplac-
ian. (In scatteringtheorythereis a differentborderline u=1.) For N>2 the questionwhether
oqisd H) isfinite or infinite cannotbe answeredsolely in termsof the asymptoticfall-off of some
interclusterpotentialsl ;(x): the natureof the thresholdZ, at the bottom of the continuousspec-
trum alsoplaysa decisiverole. We beginwith someresultsfor the casewhere?, is a two-cluster
threshold. This meansthat for the energy, andslightly above,the systemcanonly desintegrate
into two boundclustersC,, C, (seeFig. 4).

This situationcan be representedyy a productwave function

P(X)=u(Xa) p(x?); HP=3¢ (4.12

with (u,Pﬁu) arbitrary small. The conditionthat 3 is a two-clusterthresholdmeansthat 2, is a
discrete eigenvalueof H2, so that ¢ hasan exponentiabound

|p(x?)| <constexp( — a|x?|), a>0. (4.13



J. Math. Phys., Vol. 41, No. 6, June 2000 The quantum N-body problem 3461

G

FIG. 4. Two boundclusters.

Using statesys of theform (4.12) astrial stateso make(,H ) <X, it is a simplematterto show
that o4is{ H) isinfinite if I,(x) hasalong-rangeattractivepart. For simplicity we write this outin
the caseof Coulombpotentials

ee
Lx)= > L > ee<o,
ieCykeCy i — x| ieCi:keC,

assumingthat the clustershave oppositetotal charges.Using the exponentialbound (4.13) it
follows that

| (4, (Ta(X) = Ta(Xa)) 49| < consix,| 72,

andtherefore

u

1, 4
(w,(H—2>¢)s(u,(§p§—m+constxal‘2 » 9<0.

Now let ue Cy(R3), |ul=1 andsupp(u) in 1<|x,|<2. Thenthe orthonormalfunctions
up(xa)=n *u(n"x,), n=1248,..,

havedisjoint supports so that the correspondingrial statesy,, satisfy

(Yn Him)=0 (n#m); (t//,,,(H—E)w,,)s%+consln‘2<0,

if n is sufficiently large. Therefore,by the min—max principle, H possessefinitely many
(discrete eigenvaluesbelow . The same proof appliesto attractive pair potentials ~ — |x;
—X,| ~#, 0<u<2, andalsoif additionalshort-rangepotentialsare presentin I,(x). The result
showsthat neutralatomsand positive ions always haveinfinite discretespectrum'*® The accu-
mulation of eigenvaluesat 3 can be discussecby using trial wave functions ¢, of the form
(4.12 with hydrogeniceigenfunctionsu,,(x,) correspondingo an energy —n~2 in suitable
units. Thenit canbe shownthat

”(H_En) l/’nlmchonsmia; a>3

for E,=3 —n"2, if I<n growssufficiently fastwith n (I=n correspondindo a circular classical
hydrogenorbit). This meanghatH hasgroupsof eigenvaluegloseto E, comparedo the spacing
E,.1— E, asn—x (Rydbergstates. By taking symmetriesnto accountthis resultcanbe estab-
lishedfor any multiplet systent!®
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2. Finite discrete spectrum

Herewe showthat o4 {H) isfinite if therelevantinterclustempotentialshaveshortrangeand
if 2 is atwo-clusterthreshold.A channelaeL is saidto be a two-cluster channel if

b<a=b=1{0}. (4.14

Thesechannelscorrespondo the partitionsof (1,...N) into two clusters.The setof two-cluster

channelswill be denotedoy m. The lowestthreshold?, of H alwayscoincideswith 2., for some

aem, sinceX, <3, if a<b. ¥ is calleda two-clusterthresholdif % ,=3 only for ae m.
Theorem 4.5:11411912187 g nnose that 3.,=3 only if acm and in that case

la(x)=—e(1+[x]a) 7", n>2 (4.19

for large |x|, . Then the discrete spectrum of H is finite.

Proof: We give anoutline of the proof, deferringthe detailsto the subsequerndiscussionThe
startingpointis thelocalizationformula (3.20 for a speciallyadaptedartition of unity {j,} on X.
The first stepis a purely geometricestimateof the localizationerrorin the form

F=2 Vi< jaFala (416

with multification operatord=,= F4(x), leadingto H=X,j.(H—F,)j.. Eachtermin this sumis
thenfurther estimatedrom below by

ja(H_Fa)jaBJ‘.aBa}a’ (4-1D
whereB, is self-adjointwith purely discreteandfinite spectrumbelow 3, i.e.,
B,=C,+3; C,of finite rank. (4.18

ThereforeH hasan estimateH=C+3, with C=3,j,C,j, of finite rank. It follows from the
min—max principle that the numberof eigenvaluegincluding multiplicities) of H below X, is
boundedby the finite numberof negativeeigenvalueof C. O

We now describethe stepsof the proofin detail. The geometryof two-clusterchannelds very
simple:for a,bem

a*=a\U b=a\{0}; anb={0} if a#b.

b<a

It follows from (3.9) that, on the unit sphere|x| = 1, the channelsa e m aredisjoint, andthatthe
interclusterdistance|x|, is strictly positive for all xe a. The partition of unity {j,} usedin the
proof of Theorem3.1 canthereforebe adaptedo havethe following properties:

(1 joy(x) is equalto onefor [x|<R—1 andvanishedor [x| >R, whereR may befixed arbitrary
large.

(2) Thefunctionsj, for ae m havedisjoint supports.

(3) Fora>{0} the functionsj, are homogeneousf degreezerofor |x|>R, and,on supp(,),
|x|a>\|x| for somex>0.

In particularwe take R sufficiently large so that for all a with 3 ,=3
l.(x)=—Cl|x|™* on supdja). (4.19

Lemma 4.6: For any >0 the estimate (4.16) holds with
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,| € if aem,
Fa=(1+]x|)"
a=(1Fx]) e, if a#m.

(4.20

Proof: SinceF(x) is homogeneousf degree—2 for |x|>R while j,(x) is homogeneousf
degreezero, it sufficesto provethat

F<e Y j2+e, > j2
arzm

aem

for |x| <R andany e>0. Sincethe functionsj, with a e m havedisjoint supports,

> J‘ﬁ(X)=1J-

asm

F=0 on the set [x

Therefore by continuity,

&

.2
<
Fi52, 0o

where 6= §(¢)—0 as e—0. On the complemenbf this set

> ji= SoF<F > i
azm Sazm
O

To derivethe estimateg4.17) and (4.18 we distinguishbetweendifferent typesof channels.

The channel a={0}. Herewe setB;q =f(x)(H—e¢,)f(x), wheref e Cy(X) is equalto one
on supp(y). Let P be the projectiononto the spectralsubspacéd <e, . Then B, = f(x)P(H
—e,)Pf(x). By thelocal compactnespropertyof H this lower boundis a compactoperatomwith
purely discretespectrumbelow zero, of which only a finite partis below >, <0.

The channels a with 3,,>3,. Herewe set

Ba=HatTa(X) =€ (1+x)) "% Ta(x)=14(%)xa(X),

where y,(x) is the characteristidunction of supp§,). Sincel z(x) vanishesas |x| —« we have
Tesd{Ba) = 0as{ Hy) =[24,2). Therefore the spectrumof B, below >, <3, , is discreteandfinite.

The channels a with 3,=3,. Here we chooseB,=H,—W,(x), where —W,(x) is a lower
boundof | ,(x) —e(1+|x|) ~#, restrictedto the supportof j,:

W, (x) = xa(x)[const1+|x|)"“+e(1+]|x|)~2]. (4.22

By hypothesis?, is the lowest, discreteeigenvalueof H2. Let P2 be the correspondingeigen-
projectionand Q%=1-P2. On L*(X)=L?(a)®L?*(a’) we define

P,=10P% Q,=100Q%

Next we apply the Combes-Simoninequality:Let A be a self-adjointoperatorand P an orthogo-
nal projectionwhich mapsthe domainof A into itself. Let Q=1—P and §>0. Then

A=PAP+Q(A—8)Q— 5 PAQAP, (4.22
which just anotherform of writing

0<(5 'PA+1)5Q(5 *AP+1).
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Using (4.22 to estimateB, from below we obtain
BaZPa(Ha_ Wa_ o lWaQaWa)Pa+ Qa(Ha_ Wa_ 5)Qa (4-23

since P, commuteswith H,. Now we are left with proving that the two termson the right of
(4.23, viewed respectivelyas operatorson Ran(P,) and Ran(@,), have purely discrete,finite
spectrabelow 3. The samethenfollows by the min—max principle for the operatorB, on H. The
first term, asan operatoron Ran(P,), is boundedbelow by

S+ (3—4e)p2—constl+|x,|) # (4.24
for the following reasons:
H,=3+ $p2 on Rar(P,);
Wa(X)<W,(Xa) <constl+[xa]) ~#+e(1+[x,]) %
e(1+|xa|) "?< x| °<4ep};
W,0Q.W,<W2<const1+|x,|) *.

Now we fix £<1/8. Then,apartfrom the constants, (4.24) is a Schralinger operatoron L2(a)
with a regular, spherically symmetric potential V(|x|) vanishingfaster than |x| "2 at . This
operatorhas a discrete,finite spectrumbelow zero, and the samefollows for the spectrumof
(4.24 belowX..

In discussingthe secondterm of (4.23 we only usethat W, is compactrelativeto H, on
L2(X). Since Q, commuteswith H, it follows that Q,W,Q, is compactrelative to H, on
Ran@,), whereo {H,)=[21,°), 2,>3. By Weyl's theoremH,— 5§— Q,W,Q, hasessential
spectrum[2;— 8,2) on Ran(@,). Fixing now §<X;—2, it follows that the operatorQ,(H,
—6—W,)Q, onRan(@,) hasa purelydiscretefinite spectrunbelow.. This concludeghe proof
of Theorem4.5.

Notes. Exponential bounds for eigenfunctions. For a review of otherresults,seeRef. 46.

Finite vs. infinite discrete spectrum. If X, is not a two-bodythresholdin the senseof Theorem
4.5, thenthe discretespectrumof H is still finite if noneof the operatorsH? with X ,=3 hasa
resonanceat the bottom of its spectrum,i.e., a solution of H2=3. ¢ which vanishesas |x?|
—o too slowly to be squareintegrable(see Refs. 110, 111, and 109, and referencesquoted
therein. For boundson the numberof eigenvaluesseeRefs. 115, 66, and 88. However, if the
no-resonanceonditionstatedaboveis violated,thenshortrangdorcescancreateinfinite discrete
spectrum. This was discovered for three-body systems by Efimov?>?4® and proven by
Yafaey!13112

Coulomb sytems. Atoms andstableions provideexamplesvhereZ, is atwo-clusterthreshold.
The proof of Theorem4.5 can be extendedto prove that negativeions have finite discrete
spectrum-**#1t was shownby Ruska$® and Sigaf’ that a given nucleuscan bind only a finite
numberof electrons.To find a sharpestimatefor this numberasa function of the nuclearcharge
is a challengingopen problem (seeRef. 70 for someof the original papersand Ref. 90 for a
review).

V. ESSENTIAL SPECTRUM |. SPECTRAL DEFORMATION

A. Spectral deformation

The natureof the essentiabpectrumof N-body Hamiltonianswasfirst establishedy Balslev
and Combe® for the specialclassof dilation-analyticpotentials.We review this theory sinceit
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FIG. 5. The spectralcondition.

alsoprovidesthe frameworkfor a descriptionof resonance®’ In abstracform, the ideais to test
the spectralpropertiesof a self-adjointoperatorH on a Hilbert space by analyzingthe family
of transformedHamiltonians

H(&)=U(&)HU(é) ™
for a suitably chosenone-parametennitary group
U(é)=e ¥4, A=A*; ¢eR.
We usethe notation
C*={z|=Im(2)>0}; R(z)=(z—H) 5R(z,§)=(z—H(§) ™"

The analysisrestson the following two conditions:

Analyticity condition: H(£) extendsfrom e R to a family of operatorsdefinedon a com-
plex strip E={&||Im(&|<a} suchthat the resolventR(z,¢) existsfor somez=z,e C* andis
holomorphicin ¢ 5.

Spectral condition: SeeFig. 5.

For someé, e E thereis an open,connecteccomplexregion G s z, with the properties

GNoesdH(p)) =4,
G*=GNC=is connected, (5.1
G +J.

Equation (5.1) is the condition of spectral deformation:if H has essentialspectrumin |
=GNR, thenthis spectrumis removedfrom G by passingfrom H to H(&,). Herewe usethe
definition ooc{L) = o(L)\ o4is{L) Of the essentiakpectrumfor a generaloperatorL on H. The
discretespectrumogis{L) is the setof all isolated spectral points A e o(L) for which the projec-
tion

P=(2mi) 3€rdz(z—L)*l

hasfinite rank, wherel is aloop in the resolventsetaround\ which separatea from the restof
a(L). Then is an eigenvalueof L and the resolvent(z—L) ! hasa pole of (finite) ordern
=1 a z=\. \ is called a semi-smple eigenvalue if n=1: then (and only then all vectorsin
Ran(P) areeigenvectorsNeverthelessve will call P the “eigenprojection” for the eigenvaluex.
We will showthatthe two conditionsstatedabovehaveimportantconsequence®r the spectrum
of Hin I=GNR.
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1. Preparation

The two relations

H(¢é+a)=U(a)H(é)U(a) Y, aeR;

H(&)=H(&)*

hold for ¢ e R andextendby analyticity to all £ E via their resolventequivalentsin particular
the spectrumof H(¢) dependonly on Im(&). We alsoseethatthe preferencegiven aboveto C*

is purely conventionalsinceR(z, £) =R(z, £)* is alsoholomorphicin ¢ e E for z=z,. Therefore
we canalsostartfrom the equivalenteonjugate picture in which z,, &, G, G* arereplacedby
their complexconjugatesThe unitary groupU(¢) is extendedo all £ e C via the spectralrepre-
sentation

U(§)=e“§"=f e dF(s),
R
F(s) beingthe spectralfamily of A. U(¢) is a closedoperatorwith domain
peU@)= | e mdlF(s)uP<=
R

andsatisfiedJ (£)* =U(&). [We notethatU(¢&,) andthereforeA mustbeunboundedf thereis to
be any spectraldeformation]

The set A of analytic vectors ¢ is definedby the conditionthat the measured|F(s) ¢/||> has
compact support. For e A the function

§-U(y=y(§eH (5.2

is entirely analytic. A is a core of U(£) and invariantunderU(£). With this preparationthe
following factsare easily derived:

Lemma 5.1: (a) Let B be a bounded operator on H such that the function éeR
—U(&)BU(£) ! has a bounded-holomorphic extension B(&) on E. Then

B(£)=U(£§)BU(§)~t on D(U(§) ™). (5.3
(b) Let £>0 and = ,={¢||Im(&)|<a—e&}. Then there exists a neighborhood (), of z, such that
R(z.&)=U(&R(DU(E) ' on DU Y (5.4
for all (z2,6) e Q. XE,.
Theorem 5.2: Suppose that the analyticity and spectral conditions stated earlier are satisfied,
and let £ E be such that
GNoesdH(E) =T (5.5

(e.g, £=¢&;p). Then we have the following.
(a) For any ¢, ¢e A the holomorphic function z— (¢,R(z) ) on G* has a meromorphic
extension to G given by

M (¢, 1,2)=(¢(£),R(Z,€)%()) (5.6)

and by the definition (5.2).
(b) The (discrete) spectrum of H(&) in G is given by
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oasdH(E)NG= U  {polesof M(e,y,)}, (5.7)

¢, e A

which is independent of ¢ [as long as (5.5) holds].
(c) H(&) has no spectrumin G*, where

R(2)=U(&) 'R(z,§)U(§) on D(U(§)). (5.8

The same istrue for G if o(H) hasagapin|.
(d) H and H(¢) have the same eigenvalues in |. Any such eigenvalue is semi-simple for H
and for H(&), with corresponding eigenprojections P and P (&) satisfying

P=U(H)P(§U(E) on D(U(§);
dim(P)=dim(P(£))<; (5.9
Ran(P)CD(U(¢)).

These relations also hold if ¢ is replaced byg so that Ran(P) is contained in

D(U(£))ND(U(§)). (5.10

(e) Let E(s) be the spectral family of H and let AC1 be an open interval whose endpoints are
not eigenvalues of H. Then the spectral projection E, of H corresponding to A is given by

EA:;_WJ dx[U (&) R(x,6)U(§)—U(&) *R(x,HU(8)] (5.11)
A

on the domain (5.10). Therefore (¢,E(s) ) is real analytic in se A for any ¢ in the domain
(5.10). Snce the eigenvalues of H in | form a discrete set it follows that H has no singular
eontinuous spectrum in |. If A eontains a single eigenvalue \ with eigenprojection P, then (5.11)
holds for the reduced operators

E\=EA(1-P),

R(x,&)=R(x,6)(1—P(&)),

so that (¢,E(8) ¢) isreal analytic in se A for ¢ in the domain (5.10).

(f) If o(H) hasa gap in |, then the spectrum of H in | is purely discrete.

Proof: (a) Since £ £, for somee>0, (5.6) holdsfor ze Q.. R(z) is holomorphicin z
eG*, andR(z,£) is meromorphidn ze G: its polesarethe eigenvalueof H(&) in G.

(b) is a direct consequencef (a) since A is denseand invariantunderU(¢)VéeC. Inde-
pendencef ¢ follows from the uniqguenes®f meromorphiccontinuations.

(c) follows from (b) sinceM (¢, #,z)=(¢,R(2) ¢) for ze G*. This relation extendsby ana-
lyticity to ze G~ if o(H) hasagapin I.

(d) Let A el beaneigenvalueof H. By the spectraltheoremits eigenprojectiorP is givenby
P=Ilim,. o(—ig)R(\+ie), sothatby (5.8)

((p,Pl//)ZS—\lim(—i's)((p(§),R(7\+'is,§) W(€) Yo, peA (5.12
&\0

Sincethis is nonzerofor someg, ¥ e A, \ is a first order pole of R(z,§), i.e., a semi-simple
eigenvalueof H(¢). By (5.12) the correspondingigenprojectiorP(¢) satisfies

(e.Ph)=(e(£),P(E)) Veo,pe A,
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which implies PDU(&)P(£)U (&)~ andthereforedim(P) =dimP (&) which s finite by the defi-
nition of the essentiakpectrumMoreoverD(U(£)) NRan(P) is densein—and thereforeequal
to—Ran(P). Thesameanalysisin the conjugatepictureshowsthat(5.9) alsoholdsfor £. Now let
\ el beaneigenvalueof H(¢), i.e., a pole of someordern=1 of R(z,£). Then

lime"(@,R(\+ig) )= lim (o(&),R(\ +ie, &) y(£)) #0
e\,0 e\.0

for someg, e A. Since|R(\ +ig)|<e~1, it follows thatn= 1 andthat\ is aneigenvalueof H.
(e) follows from the spectralformula

i
Er=s—lim-— | dXx[R(x+ie)—R(x—ig)].
o0 27 JA

After expressingR(x+is) andR(x—ie) by (5.8 andits adjoint, e canbe setequalto zero.
(f) If o(H) hasa gapin I, then(5.8) holdsin G"*UG~ sothat E,=0 if A containsno
eigenvalueof H. O

2. Resonances

Accordingto Theoremb.2 thereareonly two casesEitherl No.o{H) =, thenH andH(¢)
havethe same(discrete real) spectrumin G. Or IC oos{ H), thenthe real (discretg eigenvalues
of H(&) aretheembeddeeigenvaluesf H in I, which havefinite multiplicities. In additionH(¢)
may have (discrete¢ complex eigenvaluesn G~ which are also independenif ¢ aslong as
oes{H(&)) staysaway from G. They are commonly called resonance eigenvalues or simply
resonances of H andactually occurin complexconjugatepairstogetherwith the eigenvalueof
H(&) in G™. Alternatively, resonancearedefinedasthe polesof the meromorphiccontinuations
of the functions

z—(e,(z—H) M), o,peA,

on C*. This definition seemscloserto the physicist’s notion of a resonancesince poles of
resolventmatrix elementsearthe real axis areexpectedo showup in the energydependencef
observablajuantitieslike transitionprobabilitiesor scatteringcrosssectionsHowever,it mustbe
notedthat theseresonancesre not uniquely definedby H sincetheir constructioninvolves the
choiceof a unitary groupU(¢), or of a set.A of analytic vectors.The physicalinterpretationof
resonancess thereforea delicate matter®® A relatedand also commonly expectedfeature of
resonanceneartherealaxisis their associatiorwith long-living metastabletatesshowingnearly
exponentiadecayunderthetime evolutiongeneratedy H. Thiswill befurther discussedelow.

B. Dilation-analytic N-body systems
In this sectionwe apply the generaltheoryto the casewhere
H=3p*+V(x)
is anN-body Schralingeroperatoron L?(X), andU(¢) is the dilation groupdefinedfor £ R by
U(&):(x)—efmP02y efx). (5.13
This group hasthe generator
A= 3(x-p+p-Xx) (5.14

andtransformsH into
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3N S5.@®)
R
2Im(€)
FIG. 6. The sectorS, ().
H(§)=U(§HU(§) t=e *3p*+V(ex). (5.19

H(§) is extendedfrom real ¢ to the complexstrip E ={£||Im(§)|<a} underthe following two
conditions:

(a) Dilation-analyticity. Forany £ e 2, V(efx)=V(¢,x) is definedasa functionwith values
in Lﬁ,C(X). Moreover,the correspondingnultiplication operatoV(£) is holomorphicin the sense
that the function £— V(&) ¢ e L?(X) is holomorphicin &e E for any e Cy(X) andsatisfiesan
estimate

V(&) wl<elzp*vll+ Ble) ¥l (5.16

for any e>0, uniformly in &
(b) N-body structure. Foranyae L thereis a decomposition

V(E,x) = V(X +14(€,x),
whereV3(¢,x) satisfiescondition (a) asan operatoron L%(a') andwhere

lim 1,(£,x)=0.

|x|g— 2

We will referto thesetwo conditionsby sayingthatV is a dilation-analytic N-body potential. An
exampleis the Hamiltonian (3.1 with V;(r)~ 1/r (a=«) or V;(r)~ (Ur)e *"; u>0(«a
= 1/2).

Here¢ H(§) isdefinedfor any ée E on Cy(X) by theexplicit expression(5.15. This operator
hasa closurewith domainD(p?) which we againdenoteby H(¢). The numericalrangeandthe
spectrumof H(&) are containedin a complexsector$,(£) of the form shownin Fig. 6 with &
arbitrarysmall. For z¢ (&) the resolventR(z,£) is boundedby

IR(z,&)|<[distz,$,(£)]* (5.17

and holomorphicin éeE aslong as S.(&¢) doesnot coverz. For simplicity we restrict o to «
< /2. Thenthe sectorsS,(£) do not sweepthe entire complexplanefor small & and [Im (£)|
<a. In particular,R(z,£) is holomorphicin ée E for z in someopensetstraddlingthe negative
real axis.

For the applicationof Theorem5.2 the main taskis to determinethe essentialspectrumof
H(&) for Im (£ #0. We definethe setof thresholdsof H(¢) as the set

H(E)= U ogdH(£)). (5.18

a>{0}

Theorem 5.3:1° Under the conditions (a) and (b) stated earlier,
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TesdH(€)= U a(Hy(8)=1(H(&)+e *R". (5.19
a>{0}

Proof: We fix ¢ 2 andwe shortenthe notationby writing H, H? for H(¢§), H3(£), etc. The
induction hypothesiss thatfor all a>{0}

O'eséHa)zT(Ha)*'eizgRJr; T(Ha)z U O'(Hgisa'

b>a
This is trivially satisfiedfor a=X. From
H,=e 2¢ip2®1+10H? on L¥a)oL?(a")
it follows that
o(Hy)=e %R + o(H?), (5.20
e.g.,by reducingH, to fibersof constantp, € a. Therefore,

o= U o(H)= U disd H) U e HY)) + e 2R" = 7(H) +e” %R".
a>{0} a>{0}

We notethatthe seto is a closed,countableunion of parallelrays.Its complemenis connected
to theresolventsetof H: for z¢ & theray {z—e R*} is in the complemenbf & andleavesthe
sectorS,(&). It remaingto provethato= o.{H). Theinclusiono C o.s{ H) follows exactlyasin
the caseé=0 (Theorem3.1). To provethe oppositeinclusionit sufficesto showthat

ITesd H)CT, (5.21)

wheredo..{ H) denoteshe boundaryof o..{ H). For supposehatze o.s{ H) butz¢a. Then
theray {z—e 2R"} mustcrossio..{H) which contradicts5.20. To prove(5.21) we referto a
generalizatiorof Weyl’s criterion>® valid for any closedoperatorH: if A e dgs{H), thenthere
existsa sequence), € D(H) with ||¢,|=1 suchthat

[(N=H)¢n|—0 and ,—0 (weakconvergence (5.22

Thisis exploitedusingthe local compactnespropertyof H (which holdssincep? is H-bounded.
Let xg be a smoothedcharacteristicfunction of the ball {|x|<R}. Since yg is H-compactit
follows from (5.22) that | xrt,l— 0 for anyfixed R. By passingio a new sequencéi,,} we can
thereforereplacethe condition ,—0 by the strongerform ¢,(x)=0 for |x|<n. Now let J,
=j§ be the partition of unity usedin the proof of Theorem3.1. Since[p?,J,] is H-compactit
follows from (5.22) that ||(A —H)J a4, —0. Moreover, |l ,d,¢,| —0 Ya>{0} since|x|,—« on
supp(Ja¥,). Therefore

H()\_Ha)‘za‘ﬁn”_>0 Va>{0}- (5.23

Onthe otherhand,| 2, g dat/nl — 1, which implies that |3, ]| =& >0 for somea>{0} andfor
aninfinite subsequencef {¢,}. Thenit follows from (5.23 that\ e o(H,).
tl
Hereafterwe revertto the original notationwhich distinguishesdbetweenH andH(&). The
thresholdsetof H is definedby

rH)= U ogdHY). (5.24)

a>{0}

With 3 (H) we denotethe lowestthresholdof H (formerly called> in Theorem3.1).
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FIG. 7. The spectrumof H(¢).

Theorem 5.4:%° Suppose that V is a dilation-analytic N-body potential, £ = and 0
<|Im(&)|<m/2. Let Sg(£) be the complex sector

Su(é)=[3(H),»)+e *R".

Then

@)  oes{H(£))CTSu();

(b) o (H()\Su(&)=0odgisdH);

(© 7(H)=7(H(§))NR; and

(d 7(H) is closed and countable. The nonthreshold eigenvalues of H are the discrete real
eigenvalues of H(&). They have finite multiplicities and can accumulate only at thresholds of
H.

Proof: Proceedingby induction we assumethat (a) and (b) hold for H? if a>{0}. For a
=X this is trivial. (b) follows from (a) and Theorem5.2. (a) Let a>{0}. By the induction
hypothesis

o(H*(£)) Cogisd H*) U Sa(£) CSu() -

Therefore, by (5.20, o(H.(£))CSy(é) for all a>{0} which proves (a). (c) Let \
e 7(H(§))NR. Then\ is a discrete real eigenvalueof H2(£) for somea>{0} andthereforean
eigenvalueof H2 by Theorem5.2. This provesthat 7(H) D 7(H(£)) NR. Now let A e 7(H). Then
\ is an eigenvalueof H? for somea>{0}. By the induction hypothesisr(H?) = r(H#(£))NR.
Therefore\ e 7(H?) implies\ e 7(H(£))NR. If X ¢ {H?), then\ is areal, discreteeigenvalue
of H3(&) which alsoimpliesh e 7(H(€))NR. (d) 7(H) is countableby its definition. By (c) it is
equalto o.s{H(£))NR which is closed. The rest of (d) follows directly from (b) and from
Theoremb.2. O

1. Discussion

In the picture of o(H(&)) (Fig. 7), drawn for Im (£)>0, we have indicatedthe points D
=discreteeigenvalueof H; E=embeddechon-thresholceigenvalueof H; T=thresholdsof H,
among them 0 and 3(H); R=discrete, complex eigenvalueof H(£) (resonancg and $
=complexthresholdof H(¢).

The essentiakpectrumof H(€) is a closed,countableunion of parallel rays emergingfrom
the thresholdsof H(£). The picture doesnot show possibleaccumulationsof thresholdsand
eigenvaluesindis thereforedeceptivelysimple.Undera changeof Im (¢) the pointsR, S remain
fixed aslong asthey are not touchedby one of the raysforming the essentiabpectrumof H(¢).
However,in the sectorssweptby theserays the spectrumof H(o) may be alteredcompletely.
This indicatesthatthe meromorphicextensionsf (¢,(z—H) ~1¢) acrosd live on a complicated
Riemannsurfacewith branchpointsT, S.
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FIG. 8. Perturbatiorof a real eigenvalueof H(¢).

C. Resonances arising from bound states

Spectraldeformationis particularlyusefulto studythe perturbationof eigenvalueembedded
in the continuousspectrum.Let H,,=H + xV be a family of self-adjointoperators definedfor
small ke R, andsupposehat thereexistsa correspondindgamily

H(E)=U(OH U 1=H(&)+rV(§)

satisfyingthe analyticity and spectralconditionsuniformly for small k. Let A e IC o(H) be an

embeddeckigenvalueof H. After spectraldeformation\ becomes discrete,semi-simpleeigen-
value of H(¢§), whoseperturbationby «V(£) may be studiedby standardnethods We consider
the simplestcasewhereV(¢§) is boundedrelativeto H(£) so thatanalyticperturbationtheoryfor

semi-simple discreteeigenvaluespplie§® (seeFig. 8).

For small x the operatorH (&) hasa groupof eigenvalues\, ¢ G* which convergeto \ as
k—0. The\ . arethe eigenvalue®f afinite-rankoperatora(«) actingon the unperturbeceigen-
spaceRanP(¢), whereP(¢) is the eigenprojectiorof H(&) correspondingo the eigenvalue\.
For small « the operatora(x) hasa convergentRayleigh-Schralinger expansiorf®

a(k)=ag+a k+ayk’+--;

a,=AP(%);
(5.25
a;=P(§V(HP(E);
a,=P(V(HRMNHV(§P(&).
Hereﬁ(z, £) isthereducedresolvent
R(z,£)=R(z.£)(1-P(§), R(z,§)=(z-H(§) *, (5.26

which is holomorphicin z near \. The important point is that the description(5.25 of the
perturbedeigenvaluescan be reformulatedentirely in terms of H and V without referenceto
spectraldeformation.This is the essencef the following theoremdueto Simor?® for which we
first statea more precisehypothesis.

1. Hypothesis

H(€)=U(&)HU(&) ! satisfiesthe analyticity and spectralconditionsstatedat the beginning
of this section.V is symmetric and boundedrelative to H, so that B=VR(z,) is bounded.
Moreover,it is assumedhat the family of boundedoperatorsB(£)=U(£)BU (&) ™%, éeR, hasa
bounded-holomorphiextensionto all £ E. ThenV(¢) is definedby V(&) =B(&)(zo—H(E)),
which is boundedrelativeto H(¢). We remarkthatby Lemmab.1

B(§)=U(§)BU(£) ™ on D(U(E) ™).
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Theorem 5.5:% Under the previous hypothesis let A | be an eigenvalue of H with eigen-
projection P. Then the corresponding perturbed eigenvalues \ . of H (&) are the eigenvalues of
the finite rank operator

b(k)=U(£) "a(x)U(&)|ranp) »
which maps Ran(P) into itself. The expansion of b(«) eorresponding to (5.25) is
b(k)=by+bik+byk?+--;
by=A\P;

(5.27)
b,=PVP;

bzzpf ()\—s)*ld(PVE(s)VP)—iﬂdis(PVE_(S)VP)s:xo-

Here P denotes the principal value, and E(8) =E(s)(1— P) is the reduced spectral family of H.
(The negative imaginary termin b, is the precise form of the Fermi golden rule.)

Proof: According to Theorem5.2, U(¢) mapsRan(P) onto Ran(P(£)) with the inverse
U(&) ™1 restrictedto Ran(P(¢)). Thereforea(x) and b(x) have the same eigenvalues.On
Ran(P) we have

by=\U(&)*P(H)U(§)=\P;
by =U (&) 'P(£)B(£)(zo—H(£))P(HU(§)
=PB(zy—H)P=PVP.

By the sameargumentwe can express

b= limU(&) *P(EV(E)R(\+ie,E)V(£)P(HU(E)
e\,0
=limPVR(\ +ig)VP
e\,0
in termsof H andV. Using the spectraltheoremthis canbe written as
b2=limJ()\+is—s)_1d(PVE(s)VP).
e\.0
Accordingto Theorem5.2 (e), the function s— PVE(S)VP is real-analyticin someopeninterval
A s \. Equation(5.27) thusfollows from the identity
lim f ds(\+ic—s) f(s)= —iwf()x)+73f ds(\—s) f(s),
e\,07 A A

valid for any integrablefunction f on A which is Holder continuousat s=X\. |

2. Exponentially decaying metastable states

In the generalframeworkof spectraldeformationit is not clearhow to associatdong-living
metastablestateswith resonancesigenvalueof H. However,for resonancesrisingfrom bound
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statesthe unperturbeceigenvector®f H will turn into metastablestatesunderthe time evolution
generatedy H, . For simplicity we will treatthe casewhere\ is a nondegenerateigenvalueof
H with normalizedeigenvectory. Following Ref. 51 we will showthat

(e Mly)=e ™+ O(k?) (5.28

uniformly in 0<t<o as k—0. In this sensey hasexponentialdecayin time governedby the
complexresonanceigenvaluex . .

Theorem 5.6:5! Under the hypothesis of Theorem 5.5, suppose that \ is a simple eigenvalue
of H with normalized eigenvector ¢. Let ge Cy(l) be a smoothed characteristic function with
g(x)=1 on some open interval A> \ and such that \ is the only eigenvalue of H in supp(g).
Then

(e Hdg(H, ) ) =A(k)e" M+ B(k,t); (5.29
A(K)=(Y(E),P (£)Y(£)) =1+ O(k?); (5.30
IB(k,t)|<Kk%en(1+1) ™ Vm>0 (5.31)

as k—0, uniformly in 0<t<<co.
Proof of (5.28): Herewe choose0<g=<1. Fort=0 we obtainfrom (5.29—(5.31)

(¢, (1—g(H ) p)=[/(1-g(H ) "y|*=0(«?),
andtherefore
(e M(1-g(H,)) ) =0(x?)

uniformly in t. With this estimate(5.28 follows from (5.29 and (5.30. |
Proof of Theorem 5.6: Let R, (z)=(z—H,) 1. By the spectraltheorem

F(t)=(y.e '"Mg(H,) )

=Iim2—1., dx g(x)e "(,[R(x—is)— R (x+ie)]y). (5.32
£N\0 ml JR

Using (5.8) andits adjoint, F(t) canbe expressedn termsof (z—H ,(¢)) '=R.(z,&) as
F(t)=F(t,6)—f(t,6);
(5.33
1 ) —
106= 5 | dxgtoe (08, Rx,E U8,
R
Here we haveassumedhat Im(\,)<0. Otherwisethe path of integrationmustbe modifiedby a

detouraround\ , in C*, which doesnot affect the estimatesoelow. Now we split R,(z,£) into
singularandregularparts:

P.(&)
Z— A,

R.(z,6)= +R(z,8). (5.34

By hypothesiswe can pick a contourI” enclosingsupp@) which separates. from the rest of
o(H(€)). (SeeFig. 9.) Then,for small k, I' alsoseparatea , from therestof o(H,.(£)), sothat
R.(z,&) is holomorphicin z in the interior of I'. Since|R,(z,£)| is boundedby a constantfor
small k andall ze I it follows from (5.34 by the maximumprinciple that
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FIG. 9. Choiceof the contourT.

IR, (z,&)||<const (5.35
for small « andall z in the interior of I'.

Inserting(5.34) into (5.33 we obtaintwo contributionswhich are estimatedseparately.

3. Contribution of the regular part

Since PK(§)§K(2, £)=0, the contributionof the regularpartto f(t,£) is given by

1 —itx R .
z—m.fRng(X)e (U, (8),R(x,6)U,(§));

(5.36
u, (&) =(P(&)—P(&))P(£)=0(k).

By patrtial integratioithis integralis seento_havea boundof the form (5.31) for any m>0, since
the x derivativesof R, (x,&) arepowersof R, (x,¢) andthereforeboundedby (5.35).

4. Contribution of the singular part
The singularpartof R,(z,¢) contributesto F(t) the term

— 1 ) — 1 :
A(K)Z_Tri'JRdX g(x)e"tx(x—xk)‘l—A(K)z—ﬂdex gx)e”'"™%(x—x,)",  (5.37

whereA(«) is givenby (5.30.
Sinceg=1 on someopeninterval A s A we candeformthe path of integrationinto C~ as
shownin Fig. 10. From the secondintegralin (5.37) we thenpick up the residue
A(k)e M,

The remainderis given by (5.37) with both integralsnow takenover the path y whereg(x)
=1 for Im(x)<0. Using the identity

P(OP(EP(E)=P(£)+(P(§)—P(£)(P(&)—1)(P (&)~ P(£))

FIG. 10. Deformingthe integrationcontour.
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and the fact that (z//(E),z/;(g))z(z,/f, ¥)=1, we seethat A(k)=1+0(«?). The remaindercan
thereforebe written in the form

mit) f dxg(x)e” (x—N,) Hx—\,) 7!
Y

v

#0062 [ dxgxe X M+ x-h ) ).
Y

Usingthatim(\,)=0(«?) andpartialintegrationasbefore we concludethatthe remaindeihas
a boundof the form (5.32) for any m>0. O

Notes: Spectradeformationis alsodiscussedn Ref.81, Vol. IV, andin Ref.45. For a critical
review of the correspondingnotion of resonancesee Ref. 98. As a tool to effect a spectral
deformationthe dilation group x—efx on R" can be replacedby other flows or more general
distortions?>86:154934 particular,the Balslev-Combegesultshold underthe weakerhypothesis
thatonly thetails of theinterclustempotentialsl,(x) for large|x|, havesomeanalyticity** Oneof
thefew perturbativeresultsfor N-body systemss the Starkeffect*1#which requiresasymptotic
ratherthan analytic perturbationtheory>® Another exampleis the atom coupledto a quantized
radiationfield® A time-dependermperturbatiorapproactto theresonanc@roblemwasinitiated by
Soffer and Weinsteirt®? (seealso Ref. 73). Generallyspeaking.all resultson the existenceand
interpretationof resonanceso far rely on somesort of perturbationargument.

VI. ESSENTIAL SPECTRUM Il. MOURRE’S INEQUALITY

The significanceof Mourre’s inequality>"®for the analysisof N-body systemscanhardly be
exaggeratedAs a tool for exploring the natureof the essentialspectrumof H it is both more
generaland more powerful thanthe (formally related conceptof dilation-analyticity.In addition,
it providesa direct insight into the propagationpropertiesof continuumstateswhich form the
basisfor time-dependerdcatteringheory.As it appeardaterin Theorem6.1, Mourre’sinequality
hasno immediateheuristicappeal However,the following considerationgrovide someprelimi-
nary understandingf its form. For trajectoriesy,=e "'y in the continuousspectralsubspace
‘He we may expectthat

(X2)= (¢, X24)~ 012 (t—c0) (6.1)

for someconstant?=0. This constanishouldbe equalto the secondime derivativeof (x?/2), in
the time mean,or for statesy with sufficiently sharpenergydistribution. Noting that

2 2
W<E>t:<i[HaA]>t;

Azi[H,x—Tzi(p-x+x~p); (6.2
2| 2
i[H,A]=p>—(x-VV(x)), (6.3
we areled to a specialcaseof Mourre’s inequality:if E is not an eigenvalueof H, then
BA(H)=E\(H)i[H,A]JE;(H)=(6(E) —£)EA(H) (6.4)

for somed(E)=0 andanye>0, whereE, is the spectralprojectionof H for a sufficiently small
openinterval A s E. The Mourre constantd(E) is directly relatedto the effect of thresholdsA
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thresholdof H is an eigenvaluex? of H? for somea>{0}, correspondingo a stationarystate
JRel?@a') of the subsystenH?. In the energyrangeabove\?, we expectthe existenceof
scatteringtrajectoriesy; with a behaviorlike

l/lt%e_i(]JZP;+)‘a)tl/fa®l,/la (tHoo), (65)

wherey, e L?(a) is arbitrary.For suchtrajectorieswith energydistributionsufficiently localized
nearsomeenergyE>\?2, we will have

(X2~ (X2~ (PIP~2(E-\1?  (t—). (6.6

For fixed E all thresholds<E might contributescatteringstateswith energiedocalizednearE.
For E>3,, the Mourre constant (E) is in fact twice the distance of E from the highest threshold
<E. Equation(6.4) alsoholdsfor E<Z if we defined(E)=0. Thisis trivial if E¢ o(H). If E is
an eigenvalueof H, then(x?), is constantfor the correspondingoundstatesln this caseE, (H)
reducedo an eigenprojectiorfor small A, andB,(H) =0 follows from the virial theorem:

(¢,i[H,A]¢)=0 6.7)

if ,¢ areeigenvectoref H with the sameeigenvalueE. Equation(6.7) is formally obviousfor
any A=A*, since (¢,i[H,A]¢)=iE[(y,Ad)— (A, d)]=0. All theseare special casesof a
more generalMourre inequality: (6.4) holds for any real E, up to an error term which is a
eompact operator. From this powerful inequality we will derive a numberof basicresultscon-
cerningthe structureof the continuousspectrumof H:

() Eigenvaluesaway from thresholdshave finite multiplicities and can accumulateonly at
thresholdsandonly from below. Sincethresholdsareeigenvalue®f subsystemst follows
thatthe setof thresholdss closedand countable.

(i) Eigenfunctiongor nonthresholeigenvaluesiecayat leastlike exp(—|x|v2(A —E), where
\ is the lowestthreshold>E.

(i) H hasno eigenvaluegandthus no threshold$ >0.

Laterwe will exploit Mourre’s inequalityto analyzethe largetime behaviorof continuumstates,
therebyconfirming the heuristicargumentsusedin this introduction.

A. The virial theorem and Mourre’s inequality

We definei[H,A] by the explicit form (6.3) asa Schralinger operatoron D(p?), assuming
thatthevirial (x- VV(x)) also satisfiesthe conditionsimposedon the potential V(x). Thenthe
virial theorem(6.7) canbe provenby using someregularizationof A, e.g.,

A—>A8=%(p-xe*8x2+e*8x2x-p) (>0). (6.9

HereA, is boundedrelativeto p?, andi[H,A,] is definedby an expressiorsimilar to (6.3). The
formal argumentgiven for (6.7) is correctfor A,, sincey, ¢ e D(A,). Thus(y,i[H,A,]¢$)=0,
and (6.7) follows in the limit £—0.

Definition: A threshold of H is an eigenvalueof H? for somea>{0}. 7(H) is the setof all
thresholdsof H. The Mourre constant 6(E) is definedfor any real E by

0 for E<3;

0(E)= inf  2(E—\) for E=3. (6.9
Ner(H);A<E

Theorem 6.1:7>"° Suppose that the virial (x-VV(x)) satisfies the same condition as the
potential V(x). Let i[ H,A] be defined by (6.3), and let E,(H) be the spectral projection of H for
an interval A. Then we have the following.
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(i) Given Ee R and £>0, there exists an open interval A s E and a compact operator K such
that

B,(H)=E,(H)i[H,AJE,(H)=(0(E)—¢) E\(H) +K. (6.10

(ii) Nonthreshold eigenvalues of H have finite multiplicities and can accumulate only at
thresholds. Therefore r(H) is closed and countable.

Notation: We will usethe abbreviation* A s E” to saythatA is an openinterval containing
E and“ A—{E}" for a sequencef suchintervalswith length|A|—0.

Corallary: Equation(6.4) follows from (6.10 if E is not an eigenvalueof H.

Proof: Multiplying (6.10 from both sidesby E,(H) we seethat K may be replacedby
EAKE,. Thenwe let A—{E} while keepingK fixed. Since E is not an eigenvalueof H,

S
E\(H)—0 andtherefore| KE,(H)|—0. O
Proof of Theorem 6.1:3 We proceedby inductionin subsystemsassuminghat Theorem6.1
holdsfor all H* with a>{0} in the following form: 7(H®) consistsof the eigenvaluesf all H®
with b>a, 62(E) is definedwith respecto 7(H?), and(6.10 reads

BA(H)=(6%E)—&)E,(H®)+K on L?a"), (6.12

whereB,(H?)=E,(H?)i[H? A?|E,(H?); i[H?,A%]=—A%—(x®- VV?(x?)). Thisinductionhy-
pothesisis trivially satisfiedfor a= X.

Lemma 6.2: Part (ii) of Theorem 6.1 follows from part (i).

Proof: By part (ii) of theinductionhypothesis;(H) is closedandcountablelLet E,—E be
an infinite sequencef eigenvaluef H with orthonormaleigenvectorsy,, . From Theorem2.1
we know thatE=3,, so that #(E)=0 impliesE € 7(H). By (6.7) and (6.11),

0=(6(E)—&)+ (¢y,Kihp)

w
for any £>0 and large n. Since ,—0 we have |Ky,|—0 and therefore (E)=0, i.e., E
e 7(H). O
Lemma 6.3:

Ba(H")=(6(E)—&)Ex(H?) (6.12

for any Eec R, any e>0 and some As E.

Proof: If E is not an eigenvalueof H? we haveB,(H?)=(6%(E) —&)E,(H?) by the induc-
tion hypothesisandby the Corollaryto Theorem6.1,and(6.12 follows since#2(E)= 6(E). Now
let E be an eigenvalueof H? with eigenprojectiorP. Thenwe haveto prove (6.12 with 6(E)
=0. Sincedim(P) = is not excludedwe represenP asa stronglimit of finite rank projections
P,<P. We abbreviate B,(H*)=B, and E,(H®)=E,. By the virial theorem P,B,P
=P,PB,P=0, sothat

By=(1-P,)By(1—P,)+P,By(1—P)+(1-P)B,P,.
Using (6.1 in theform B,= —e+E,KE, to estimatethe first term on the rhs, we obtain

By=—&—[K(P=Py)|—[KE;(1=P)[=2[P,Bs(1-P)].

S
SinceK andP,B, arecompactandsinceE,(1—P)—0 as A—{E}, we canfirst fix n andthen
A to makethe last threenormsarbitrarily small, and multiplying the resultfrom both sideswith
E, proves(6.12. O
Lemma 6.4: Given a compact | CR and £>0, there exists 6>0 such that

B,(HY)=(6(E+¢)—2¢)E,(H?) (6.13
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for any Ec| and any A s E of length |A|< 6.
Proof: Supposethis is false. Then (6.13 is violated for some sequenceE,—E in | and
corresponding\ , s E,, with |A,|—0. From (6.12 we obtain

EA(H?) (6.19

&
BA<HE>>( 6(E) =5
for someAs E. Let n besolargethat|E,—E|<e/2 andA,CA. Since §(E+x)=< 6(E)+x for
any x=0, we thenhave

&
6(E)=6(Ep+s)—s+E—Ep=0(Ep+s)—35.

From this, A,CA and (6.14 we deducethatBAn(Ha)B(e(En+s)—Zs)EAn(Ha), which
contradictsour assumption. O
Lemma 6.5:

Ba(Ha)=(0(E+e)—2£)Ex(H,) (6.19

for any EeR, any e>0 and some As E.
Proof: We representhe functions (x) = y(x, ,x%) by their partial Fourier transformswith
respecto x,, i.e., by functions (k) on a taking valuesin L?(a*). In this representation:

(4,¢)= f;ﬂk( e (K), 3 (0))2gaty

k2

— +H®

(Hae(k)=| 3

e(K);

(Ea(Ha) ) (k) =E - x2i(H?) ghp(K);
(IHa, AT (k) = (K2 +i[H? AY]) e ().
For y=E,(H,) ¢ we thusobtain

(4,Ba(Ha) )= Ldk( (k). (k?+Ba— x2(H*) (k) ) L2at) -

Since H? is bounded from below, the integrand has compact support: ¢e(k)
=E,_ k2n(H?) (k) =0 for largek?. By (6.13 it thushasa lower bound

2

k
E— —+8) —28) | (k) [?=(6(E+ ) - 2¢) | e (K)|I?

2
k“+6 >

which proves(6.15). O
Proof of (6.10): Let fe Cy(A) be realwith f=1 on someA, s E. Applying the localization
formula (3.20 to the Schralingeroperatori[H,A], we obtainin analogyto (3.21)

FH)I[H,Alf(H)= é F(H)jai[Ha,Aljaf (H) +compact.

We notethat

L=f(H)j.—jaf(Ha) is compact (6.16
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for any fe Cg(R). In fact, by the Helffer—Sjostrandformula (9.2), it sufficesto verify that

Ja(z=H) ' =(z=Ha) " Yja=(z—Ha) "'(3[ja,p?1+1afa) (z—H) *

is compact.This follows from local compactnessince both Vj,(x) andI,(x)ja(x) vanishas
|x|—ce. Using (6.16) and (6.15 we arrive at

FH)I[H,AJf(H)=(6(E+¢)—2¢)f(H)%+ compact.
Multiplying both sideswith EAl(H) we obtain
BAl(H)>(0(E+s)—Zs)EAl(H)+compact.

This is equivalentto (6.10), since 9(E+ &)= 6(E) + ¢ for smalle if E ¢ 7(H). O
We now give a preciseform of the estimate(6.1) which playsanimportantrole in scattering
theory. A finite, openinterval A will be calleda Mourre interval if

EA(H)i[H,AJEA(H)=6E,(H) for some 6>0. (6.17

Let Hy=RanE,(H)). Then(6.17 implies

X2
Iiminf<?z> =6>0 (6.18
t

t—x

for all initial statesy in thedomain,ND(|x|), whichis invariantundere "' anddensen #, .
By the virial theorema Mourre interval A containsno eigenvalueof H sothat HA\CHc. If E is
not an eigenvaluenor a thresholdof H, thenE is containedin a Mourre interval by (6.4). Since
thesetof eigenvaluesindthresholdss closedandcountablejt follows thatthe spectral subspaces

Ha (A a Mourre interval) span a dense linear set in H¢.

B. Exponential bounds for eigenfunctions and absence of positive eigenvalues

As afirst applicationof Mourre’sinequalitywe provethefollowing resultsof Froese Herbst,
andPerry:
Theorem 6.6:3! Under the hypothesis of Theorem 6.1, let Hy=Ey and

a=sud BeR|eF yeL(X)}, (r=|x|).

Then E+ 1/2a? is either infinite or a threshold of H.

Proof: The proofis indirect: we assumed<a <o andE+ 1/2a?¢ 7(H), which will leadto
a contradictionWe constructa sequenc®f smooth,boundedunctionsF,(x) which approximate
F(x)= ar from abovein successivelyargerregions:

Fn(X)=anrj(F)(1—j(&ar)). (6.19

Herej(r) is a smoothectharacteristidunctionof {r >1}, «, is somesequencavith a,\, @, and
£, \.0 is chosensuchthat

[[eFny| — oo (6.20
We define
lﬁn:eF"lﬁHeF"lﬂH*li =W b)) (6.21)

Lemma 6.7: (i) 0. (il) p2n—0. (iii) | G(x) ¢ — 0, and | G(x) (1+ p?) 2| —0 for any
function G e L*(X) which vanishes at ce.
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Proof: (i) follows from (6.18); (iii ) follows from (ii) andfrom the compactnesproperty(2.6).
To prove (i) it remainsto showthat||p?,|| is bounded We set

Hp=efrHe Fa=H— J|VF [2+iy,; (6.22

7n=%(VFn'p+p‘VFn)- (6.23

ThenH,y,=E,, and E=ReH,),=(H),— 1/2{|VE,|?),. Since VF,(x) is uniformly bounded

in (n,x), we obtainsuccessivéoundsfor (H),, (p%)n, | vatinl, |H ¢l and|p?y,|.
O

Remark: In the following estimatesve will needhigherderivativesof F,(x). Theyareof the
form

%
Fak,,. .. x (X)=an(m)i(r)(1—j(8nr)), (6.24

plus terms of fixed compactsupport[involving derivativesof j(r)], plus terms of order &,
[involving derivativesof j(e,F)]. By Lemmas.7 (iii ), andsinces ,— 0, thesetermswill give no
contributionsin the limit n— o to the expectatiorvalues(--- ), estimatedater. The sameis true
for the leadingterm (6.24) if s> 1, sinceit is of orderr! $ asr—oo.

Lemma 6.8:

lim [|(H— 3 &= E) ¢4 =0.

Proof:
0=((Hy —E)(H,—E))y
:<(H_ %|VFn|2_ E)2>n+<7121>n+<i[H_ %|VFn|2v7n]>n- (6.29

We showthatthe third term vanishesasn—«. By the remarkabovewe needonly consider
(i[V,val)n=—(VV-VF,), sincethe other commutatorsinvolve higher derivativesof F,. By

(6.24),

lim (VV-VF),= lim ((x- VV)F~j(F)),=0,

n—x n—o

sincex- VV(x) is p2-boundedandr1j(r)—0 asr— . Becausehefirst two termsin (6.25 are
positive, we now havelim, .| (H— 1/2|VF,|?—E) 4,| =0. Thereforeit sufficesto show that
[(aa=|VFal)¥nl—0. By Lemma6.7, the contributionfrom any boundedregion to this norm
vanishesasn— , so we needonly showthat a,l ,—0 for 1,=|j(ear) #al. This is trivial if «
=0. Otherwisewe split I', into contributionsfrom theregionsj(e,F) <6 andj(e,r)> 8, obtain-
ing I,< 6+ e~ y)||| eFny| = 1. This boundbecomesarbitrarily small by first fixing & small
andthenn sufficiently large, sinceeventuallya,(1— é)<a. O
Lemma 6.9:

lim inf(i[H,A]),>0.

n—w«
Proof: Let B=i[H,A]. SinceE+ 1/2a?¢ 7(H), we havea Mourre inequality:

<EA(H)BEA(H)>n20<EA(H)>ﬂ+<K>n (6-2@
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with >0 and compactK, for someinterval A=(E+ a?/2—¢,E+ a?/2+¢). By Lemma6.7,
(K),—0 for n—oo. SettingE,=1—E, we alsoobtain

[Estmll<e Y(H— 3a?—E)yy|—0 (6.27)

from Lemma6.8. Now (B),=(EABEx)n— | Es il (2IBE ol + |BE ath,ll). By (6.27) the second
term vanishesasn— oo, sinceH i, is bounded.Therefore

lim inf(B),=lim inf(EABE,),=lim infé(E,),6>0.

n—o n—oc n—o

O
The nextstatements in contradictionto Lemma6.9 andthuscompleteghe proof of Theorem
6.6:
Lemma 6.10:

lim sugi[H,A]),<0.

n— o

Proof: From the identity 0=2 Im(A, ,(H,— E);,) we obtain
<i[H,A]>n: %<E[|VFn|21A]>n_2 Re( YnA)n -

The only contributioninvolving only first order derivativesof F, is

—(Pk(XkFp 1+ Fr X)) Pr)p -

By (6.24) this is equalto

—2an<<p-x>’(7”<x-p>> <o,

modulotermsvanishingasn—oo. O
Theorem 6.11:® Under the hypothesis of Theorem 6.1, eigenvalues can accumulate at thresh-
olds only from below.
Proof: Proceedingnductively, we assumehatthresholdscanaccumulateat a giventhreshold
E only from below: thereis an interval (E, ... E+ 1/2a?] («>0) containingno thresholds.
Now supposéhereis aninfinite sequencef eigenvalue€,,\ E in this interval,with correspond-

w
ing orthonormaleigenfunctionsp,— 0. This leadsto a contradiction.The proof is a straightcopy
of the proof of Theorem6.6. The function F(x)=arj(r) correspondgo the functionsF,(x) of
(6.17) for ap=a and £,=0. By Theorem6.6, e" ¢, L?(X). Therefore y,=e" ¢,||e" ¢, *

w
—0, and the rest of the proof (Lemmas6.7-6.10 goesthroughwith minimal changes:as an
eigenvalueE is replacedby E,, . |

Theorem 6.12:3! Under the hypothesis of Theorem 6.1, H has no eigenvalue E>0.

Proof: Sincethresholdsarisefrom eigenvaluef subsystemsye canproceedby induction:
assuminghatH hasno positivethresholdwe provethatH hasno positiveeigenvalueThe proof
is again indirect: we derive a contradictionfrom H¢=Ey; E>0. By Theorem6.6, e*"
e L%(X) for any a>0. We first fix p suchthat

f dx|¢|2<f dx |2, 6.28
r<p r>2p

Thenwe choosea C*-function F(r)<r, with F’(r)=0, and F(r)=r for r>p, andwe define
wa:eaF¢||eaFw||7l; <' . '>a:(l/l(1’ e l//a)' By (6'28’
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f dx |, |><e 2. (6.29
F<p

Lemma 6.13: For some constant ¢, and all >0,

aZ

(H)o= (0 Htry) =E+ - cra’e 2. (6.30

Proof: We define

aZ

1
H,—e“"He *F=H— ?|VF|2+i’a7;y= 5(VE-p+p VF).

ThenH ,¢,=Ey, and(H),=E+ (a?/2){|VF|?),. Since|VF|?=1 for r>p, we obtain from
(6.29 |{|[VF|?),—1|<c,e 22*. O
Lemma 6.14: For some constants c,, €3 and all >0,

(i[H,A]),=(p?) ,— (X- VV(X)) ,<€,a’e 29"+ ac;. (6.30)

Proof: From the identity 0=2 Im(A¢,,,(H,—E),) we obtain
a2
(iH,AL) =5 (LI VF %, Al) .~ 20 Re(yA),.

Since|VF|?=1 for r>p, thefirst termis boundedby ¢,a? exp(—2ap). For the secondterm we
compute

d 1
2 Re(yA) = pu(XF o+ Fox) = 5 Fon— 5xiFonk,
whered=dim(X). Thefirst termis positivesinceF,,=x,r~F’(r), F’'(r)=0, andthe remaining
two termsare bounded. O
Completion of the proof of Theorem 6.12: Subtracting(6.30 from (6.31) we arrive at

%<p2>a_ <V>a_ <X' VV(X)>Q$ —E- %a2+ (ep+ 62)a2972ap+ acj.

This is a contradictionthe left-handsideis boundedbelow, while theright-handsidegoesto —«
for a— . O

Notes: The useof the dilation generatorA in Mourre’sinequalityis asarbitraryasthe useof
thedilation groupto effecta spectraldeformation.Thefollowing variantof Theorem6.1is dueto
Skibsted'%’ a simplerproof suggestedby Grafis givenin Ref. 39. The startingpoint is to replace
the observablex? in (6.1) by a convexfunction G(x) with the samegrowth:

e X’°<G(x)<c,x2. (6.32

Then(6.2) and(6.3) takethe form

i 1

(6.33
i[H,A]=pG"p— $A’G—VG-VV(x),
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where(in CartesiarcoordinatespG”"p=p;G ;px=0 by the convexityof G. The proof of Theo-
rem 6.1 in this caseis basedon a specialconstructionof the function G(x) dueto Graf3® Up to
a regularizationG(x) is given by

G(x)=maxx2+e,) (6.39

acl

for a suitablechoiceof the parameterg, . This constructionis similar to (andin fact the model
of) a later constructionby Yafaev*® which we discussmorefully in Sec.VII. In particularthe
£4's canbe adjustedso that only the tails of the interclusterpotentialsl ;(x) enterinto (6.33. As
a result Theorem6.1 holds in exactly the sameform and with the samedefinition of 6(E)
providedonly that VI,(x) existsfor large |x|, with

|VIB(X)|=O(|X|;1) as |x|,—c°. (6.39

This generalizatiorof Mourre’s theoremavoidsa global conditionon VV(x), so that potentials
with strongsingularities(e.g.,hardcore$ canbe allowed.And sinceG(x) andx? havethe same
growth, mostof theapplicationsof Mourre’sinequalityhold underthe weakerhypothesig6.35).3°

VIl. SCATTERING THEORY

A. Scattering states

The existenceand the asymptoticform of scatteringorbits ¢, for t— o dependrucially on
the rate at which the interclusterpotentialsl ,(x) vanishfor large separationWe will statesuch
fall-off conditionsin the form

HKL()=0(|x[;#7 M), |x|,—c, (7.)

with k a multi-index. The requiredvaluesof x>0 and |k| will be specifiedaccordingto the
context.

1. Short-range systems: p>1
Here outgoingscatteringstatesys are characterizedy the asymptoticcondition

¢t=e““‘dm>aZL e Haly  (t—+);¢,e Ha=L2(a)® Hg(H?), (7.2

where Hg(H?) is the subspacef L2(a’) spannecby the eigenvectorf H2. Eachtermin the
sum(7.2) representa surfacewavein X propagatingreely alongthe channelaC X or, viewedin

R3, a free motion of independenbound clusters.For convenienceve haveincludedthe bound
statechannela={0}: if ¢ € Hg(H), then(7.2) holdstrivially with ¢g,= ¢, ¢,=0 for a>{0}.

The existenceof a uniquescatteringstateys for any givenset{¢,} is oneof the earliestresultsin

N-body scatteringtheory#C if I,(x)= O(|x|,*), u>1, thenthe wave operators

Q) =s—1lim e'fle Hat (7.3
t— 4+

existon H,, so that(7.2) holdsfor
y= é Q;‘Pa-

The wave operatorsareisometricfrom #, to 7. Moreover,their rangesH , =Ran(Q,) satisfy

HILH; (a#b),
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expressinghe fact that

lim (e 'Halgp, e Moty )=0 (a#b). (7.4

t— +oo
Therefore the outgoingscatteringstatesform a closedsubspace

H*'=EP ‘HjCH.

acl

The proofsof (7.3) and(7.4) involve only the free center-of-massnotion of the clusters(seee.g.,
Ref. 81, Vol. Ill).

Sincethe early daysof scatteringheory,whenthis formalismwasdevelopede.g.,in Ref. 60)
the main fundamentalproblemwasto prove the conjectureof asymptotic completeness, i.e., the
conjecture that every state e H is an outgoing scattering state in the sense of (7.2). This
problemwasfirst solvedby Sigal and Soffer>?

Theorem 7.1;9+38116.10352 ynder the hypothesis of Theorem 6.1 and if

1a()[=0(|x|3*),  u>1, (7.9

then H " ="H.

By time reversalthe sameresult holds for the subspace{ ~ of incoming scatteringstates,
definedby an asymptoticconditionof the form (7.2) for t— —cc. This meansthat everyorbit i,
of the systemhasan asymptoticform (7.2) in bothtime directions.

2. Long-range systems: (p<1)

For u not too small it is knowrf?!? that the appropriateasymptoticcondition generalizing
(7.2 is

p=e My e el itailPalg,  (t—teo) (7.6

-2

with ¢, € H, asbefore.Comparedto (7.2) only the free center-of-masgropagatorof the frag-
mentsin channela is modified from

e (12 pat to e (i pitfiaayt(pa),

which still conserveshe momentump, . Here «,(p,) is an adiabaticphasearisingfrom the fact
that classicallythe fragmentsare locatedat x, = p,t(1+O(t #)) (ast—), sothat

Fa(x)=1,(pat) +O(t %), (7.7)

providedthat Vi ,(x)=0(|x|, * ) as |x|,—. For 2u>1 the error termin (7.7 decaysinte-
grably in time, while the leadingterm is of ordert™# and thereforenot integrableif pu=<1.
Accordingto this classicalpicture the ansatz

1
0P [ d51a(pe®

shouldwork for x> 3. The reasorwhy we havenot fully defineda, 4(p,) is twofold. First, it is
clearthat the modified propagatoiis insensitiveto a changeof a,,(-) on a null setof a. This
allows us to restrict p, to the seta* (3.9), wherel,(p,8) indeeddecayslike s~ #. Second,
a,1(Pa) is arbitrarywithin gaugetransformationsf the kind

aa,t(pa) - aa,t(pa) + fi(Pa)
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if lim,_ .fi(pa)=f.(pa) exists,sincein (7.6) the phasef..(p,) canbe absorbedn ¢,. Thisis
why the integrableerror in (7.7) hasno effect and why (7.6) is equivalentto (7.2) if u>1. A
completedefinition of «, ;(p,) Modulogaugetransformationss therefore

t

aa,t(pa) = f _ 1d5| a(PaS) (paca*), (7.9
R‘Pa‘a

if, for [x|a>R, [I,(x)|<cons{x|,*. Fora={0} we havep,=0 andwe setay, ;=0. An impor-
tant exampleis a systemof chargedpatrticles(the Coulombcasg. Thenfor p, e a*

Po Pyl

m, nmpg

’

Fa(pat)= tt 2 €.6p
a<f

wherethe sumrunsoverall pairs of clusters in the channela with (total) chargese,, masses,
andmomentap,, e R3. A correspondinghasea, ,(p,) is obtainedby changingthe factort ! to
log(t). [This phasediffers from (7.8) by a gaugetransformation. The formulas(7.2—(7.4) can
now be transcribedo the long-rangecasesimply by replacing

H,—H,+ aa,t(pa)- (7.9

The existenceof QZ is moredifficult to provethanin the short-rangeaseIn fact thefirst general
proofs (without ad hoc assumptionn the fall-off of bound statewave functions appearedas
by-productsof the proofs of asymptoticcompleteness.

Theorem 7.2:%° If (7.1) holds for |k|<2 and some u>v3—1, then H " ="H.

This is the resultfirst obtainedby Derezirski.X® A prooffor the Coulombcasex =1 wasalso
givenby Sigal and Soffer®® The borderlineu=v3— 1 wasidentifiedpreviouslyby Enss?® Other
proofsaregivenin Refs.122 and52. In this review we give the proof of Theorem?7.1, followed
by anoutline of the strategyusedin the long-rangecase The commonbasisfor both proofsarethe
propagationestimatesand the asymptoticobservablegliscussedn the next two sectionswhich
arebasedn Ref. 52.

B. Propagation observables and propagation estimates

Mourre’s inequality in the integratedform (6.18 only statesthat the expectationvalue
(x2);= (¢ ,x%yy) divergesquadraticallyin t ast— oo for anyinitial stateyse H, , whereA is any
Mourre interval. To derive from this the detailed asymptoticform (7.2) or (7.6) of ¢, it is
necessaryto constructa set of phase-spaceropagationobservablesp;(x,p) which control the
asymptoticpropagationinto all possiblechannels.The basictechniquefor deriving the corre-
spondingpropagationestimatesequiresthat the Heisenbergderivativeof ¢, is essentiallyposi-
tive, in the sensethat

Dy =i[H,$]+ d1py=P;+ Ry,

where P,=0 and |R/|=0(t""), p>1. If ¢, is uniformly boundedin t, it then follows by
integrationthat

[ apo=consty?
0

where(P,);= (¢4 ,Pyy,)=0. This is the type of propagatiorestimatewhich forms the basisof all
proofs of asymptoticcompleteness.

1. The Graf-Yafaev construction

The following geometricconstructionin X wasintroducedby Graf3® thensimplifiedin Ref.
19, and later modified by Yafaev!!® Following Ref. 52 we use a time-dependentersion of
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0"(0) xl

FIG. 11. A radial sectionof g(x,o).

Yafaev's construction,which resultsin a function g;(x); xe X, t>0. The motivation for the
constructionwill becomeevidentwhenwe introducephasespaceobservableduilt on g,(x). Let
o be a positive, decreasindunctionon L:

0'{0}>0'a>0'b>0')(:1
for {0}<a<b<X, to be adjustedin the courseof the construction We define

oy (a={0});

Jax)= O'alxa| (a>{0})-

Thenthe prototypeof the time-independenGraf-Yafaevfunction g(x) is given by

g(x,0)=max f(x). (7.10

aclL

A radial sectionof g(x,o) is shownin Fig. 11 for a directionx e a.
Hereg(x,o) is convex,constanton somecompactsetcontainingthe ball | x| <1, andhomo-
geneousf degreel in the complemenbf this set.We decompos@(x, o) into maximalpieces:

fa(x) it fa(x)=g(x,0);

9(x,0)= 2, 8a(X,0); Ga(X,0)=\ "

(7.10)

The piece gq;(x,0) has compactsupporton which it is constant.The piecesg,(x,o) for a
>{0} are homogeneou®f degreel on conical supportswhoseintersectionwith a sphere|x|
=R=07q; is shownin Fig. 12. This figure correspondso Fig. 2 andservesto explainthe choice

< Supp(8s)

FIG. 12. The piecesof g(x,0).
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of 0. Supposdirst that o, = o, = 0,= 1. ThenFig. 12 reducedo Fig. 2 sinceo,|x,| = |x| exactly
if xea, etc. We now increaseo,, o, by arbitrary small amounts.Thenthe supportsof g,, 8y
broadeninto narrowbeltsshownin Fig. 12. Now we increaser, to o.> o,, o}, SO thatsupp@.)
growsto a disc coveringthe intersectionof the two belts. This indicatesthe generalconstruction
scheméfor the function o on L which canbe carriedout analytically'5523°Figure 12, together
with the definition (3.8) of the interclusterdistance suggestavhat can be achieved:Thereis a
(largely arbitrary) choiceof ¢ suchthat

x|a>X[x| on suppga) (7.12
for some\>0. Moreover,sinceg,(x,o) is, on its support,a function of x,,

Vg(x,o0)ea on supdg,) (7.13

except at boundary points, whereVg(x, o) is discontinuousThis discontinuityis removedby a
regularizationg(x, o) —g(x) which preservesonvexity:

600~ [ 90x) [T 8140 e,

where0< §e C(R) is aregularizationof the Dirac distributionwith sufficiently narrowsupport.
The sameregularizationis appliedto g,(x,o), sothat

g<x>=a§ 8a(X). (7.14

The effect of this regularizationon Fig. 12 is that the boundariesare slightly smearedbut away
from thesestripsthe functionalform of g(x) remainsthe same.For further referencewe list the
relevantpropertiesof g andg, (Ref. 116, seealsoRef. 52 or 39):

Lemma 7.3 (Properties of g):
0] g is smooth, convex, and homogeneous of degree 1 outside some ball: |[x|>R,.
(i) g(x)=g(0) inside some ball: |x|<R;.
(iii)  For any xe supp(Vg) there exists ae L, a>{0}, such that

Vg(x)ea and |x[;>\|x|. (7.15

To explain(iii), considerthe boundarypoint P shownin Fig. 12: Therethe interclusterdistances
with respectto a and X are both strictly positive, and after regularizationwe certainly have
Vg(P) e X. Thefunctionsg, havecorrespondingropertiesexcept convexity:

Lemma 7.4 (Properties of g,):

(i) g, is smooth, and homogeneous of degree 1 for |x|>R,.

(ii) g0y has compact support in |x|<R,. For a>{0},g, is supported in [x|>R;, and [x|,
>\|x| on supp@,).

(iii) Vg, is supported in |x|>R;. For any xe supp(Vg,) there exists be L, b>{0} such
that

Vg.eb and |x|p=\|x]|. (7.16

(iv) For each aeL there exists a function § sharing the properties of g given in Lemma 7.3
and such that the Hessians g; and §” satisfy
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2. The basic propagation estimate

All our propagatiorobservablesre derivedfrom
g(x)=t%g(t %), 0<s<1, (7.1
for t>0. By Lemma7.3 g, is smoothand convexin x,

1°g(0) (Ix|<t’Ry),

SX)= g (x/>t°Ry),

and,sinceg hasboundedderivatives,
@) =0tk Gigx)=0(1°7¥), (7.18

ast—oo, uniformly in x. Now we compute

n=D18=3(V@-p+p- V@) + 8 ;Di( 11— 25,8y =po;p— %Azgt_ Vg, VV— 5tzgt .
(7.19

In the first term of (7.19 g; denotesthe Hessianof g,(x), i.e., pgyp=pg: xP; (in Cartesian
coordinatel which is positive dueto the convexityof g;(x). The secondandfourth termsare of

orderst 3% andt? 2, respectivelyuniformly in x. The specialgeometricpropertiesof g,(x) are
essentiato estimatethe remainingterm

i[y,V]=Vg,-Vl,. (7.20

Here Vg, is boundedand hassupportin |x|>t°R;. For anyx in this supportthereexistsae L
suchthatVg,(x) € a and|x|,>\t° for some\ >0. Decomposing/(x) = V3(x?) + I ,(x) it follows
thatfor t sufficiently large

Vgy(x)-VV(x)=Vg,- VI, (x)<constt #+1) (7.20)

if (7.1) holdsfor |k|=1 (aswe assumedn the long-rangecase. Thenthe constantin (7.21) is
independendf x. As aresult

Di( 71— 26,@1) =pgyp+O(t ) (7.22

ast—o, with p=min(35,8x+1),6—2). As long as ©>0,6 canbe chosenin 0<§<1 suchthat
p>1. In the short-rangecasethe occurrenceof VI, canbe avoidedby treatingthe commutator
v:V—V1, directly asa form on D(|p|) which (for the samegeometricreason is seento be of
ordert ™ °* relativeto the form p? if only |I,(x)|=0(|x|,) *. For u>1 anda properchoiceof
é this leadsagainto (7.22 with p=min(38,8u,6—2)>1.

Theorem 7.5: Let ¢ be a constant such that H+e=1. If (7.22) holdsin form sense on D(|p|)
with p>1, then

| attpatpy=constri+e), vyen(p). 723
Proof: Integrating(7.22 overty<t=<t, with t, sufficiently large we obtain

t
[“at(poipy=constr+e,
ty

uniformly in t;. Sincethe integrandis =0, the limit t;—« exists. O



3490 J. Math. Phys., Vol. 41, No. 6, June 2000 W. Hunziker and I. M. Sigal

C. Asymptotic observables

Correspondingo (7.14) we decompose

gt=§ Gari  Ga:(X)=1%Ga(t™%%);

(7.29
'}’tzé Yat: Yar=Difat-
We alsointroducethe Heisenbergobservables
git)=ege " y()=e"ye M=0ag(1), (7.25

andsimilarly for g,(t), ya(t). The operatory(t) is definedon D(|p|), both the operatorsy(t)
andg(t) aredefinedon the domainD(|x|)ND(|p|), which is invariantunderexp(—iHt).
Theorem 7.6: Under the hypothesis of Theorem 7.5 the strong limits

Yy =s—limy(t), v, =s—lim y,(t), (7.26

t—o t—ox
exist on D(|p|) and have the following properties:

[y".H]=0, (7.27)

N 1
v =s—l|m?g(t)>0 (7.28

t—x

on D(|x|)ND(|pl), and similarly for y, . In particular,

h=0; i.e, vy'= + 7.2
{0} 4 a;{O}?’a (7.29

Moreover, y* and y, are independent of & within the ranges allowed by the hypothesis of
Theorem 7.5, since

y"=s—Ilim e“*‘@@‘f‘“t on D(|x|)ND(|p|), (7.30

t—x

where g(x) is the unscaled Graf—Yafaev function (and similarly for vy, ).
Proof: (Step1) Existence of y*. It sufficesto provestrongconvergencef y, on the rangeof
(H+¢) 2. Firstwe showthat

s—lim e'M'y,e M(H+¢) 2=s—Ilim(H+¢) leM'ye Hi(H+e) ! (7.31)

t—x t—x

if oneof theselimits exists.Since|d,,|=0(t’ ') we canreplacey, by y,— d,8,. Then (7.3
follows since

i[H, %~ a8]=pg/p— 1A%g,—i[n, V], (7.32
so that by our previousestimates
Il y:— @ ,(H+e) 1] —0.

To establishthe secondimit in (7.3)) it sufficesto prove convergencef
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¢=(c+H) e He M(e+H) ty
for all e H, wherewe havesety,=vy,—24,8;. Then
her=(H+c) e (D e (H+e) 1y, (7.33

andwe showthat this is norm-integrableBy (7.19 andby our previousestimateD,¥,= pg; p,
modulotermswhich give integrablecontributions.Thereforeit remainsto provethat

uy=(H+c) 'e"pg/pe "M(H+e) Y

is norm-integrableover some interval t,<t<<cc. Factorizing the positive operatorpg;p into
pg;/p=BZ B,=B}, we usethe Schwarzinequality twice to estimate

tp
j dt u,
I

2
= sup
foll=1

2

1)
f dt (v,uy;)
t

1

t . . 2
< sup(jzdt |B,e "M{(H+e) v||Be Hi(H+e) 1y
foll=1\ /1

t ) t )
< sup | at ||Bte"Ht(H+c)’lvH2><fzdt 1B~ M(H+c) Lyl (7.34
loll=1-t1 51

By Theorem?.5 thefirst factoris boundeduniformly in t;, t,, andthe secondfactorvanishesas
tl’2—>°°.

(Step 2) Existence of y, . This is provedin the sameway with two notable differences.
Insteadof i[ y;,V] we encountetthe commutator

i Ya,t V= Vga,t' Vv.

This commutatoiis estimatedike i[ y,,V]. Secondsinceg, is notconvex,pg; ,p is not positive.
Thereforewe useLemma7.4 (iv) to split pg, ,p into positive and negativeparts:

pg,.p=A, —A, with 0<A;<pG,p.
Treatingthe contributionsfrom A;" separatelyywe thenfactorizeA;” = (B, )? and usethe propa-
gationestimate(7.23 for 8; .
(Step3) Properties of y*, v, . Sincey™ exists,it follows from (7.31) that
vy (H+e)2=(H+c) Yy (H+e) 7Y,

ie., [y",H]=0 (andsimilarly for v, ). Usingthat y(t)=3,9(t) we haveon D(|x|)NnD(|p|):

1 [t 1
yt=s—Ilim n fldsﬁsg(s) =s—lim Yg(t)zo
t—oo o0

t—

andsimilarly for y, . In particular,since| g (t)| <const?,
. 1
Yoy =S— lim ?g{o}(t) =0.
t—o

Equation (7.30 now follows from (7.28 and from the fact that t | g,— g| <constt®~* since
g.(x)=g(x) for |x|=constt’. O
Next we discussthe connectionbetweeny® and Mourre’s inequality.
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Lemma 7.7: Let H, be the spectral subspace of H for a Mourre interval A (6.17). Then y*
reduces to a strictly positive operator H,—H, . In particular, H,CRan(y™").

Proof: Since y* is H-boundedand commuteswith H it reducesto a boundedoperator
—Hy . Let e HAND(|x|) and y,=e 'y, Then,by (7.27) and (6.189

(P (y)2)=1im t 2(4,@(x)2¢) = lim inf t (g ,x2y1)= 6>0

t—o t—oo

sinceg,(x)=x|. O

D. The short-range case

Theorem 7.8: If 1 ,(x)=0(|x|, *), x> 1, then the Deift—Simon wave operators

wy =s—lim e'Maly, e~ (7.39

f—oo

exist on D(|p|) for & satisfying min(su,38,2— 8)> 1.

The nameDeift—Simon wave operators comesfrom Ref. 18 wherelimits of this generaltype
wereintroducedin scatteringtheory.

Proof: The proof is almostthe sameasthe proof of the existenceof y, . The modifications
areasfollows. Insteadof (7.31) we first showthat

s—lim e'Maly, e M(H+¢) 2=s—lim(H,+¢) le'Haly, e "M(H+e) !

t—x t—x
if oneof theselimits exists.This follows from
(Yat— 8a)(H +e) 1= (Ha+e) X Yar— %8ay) (Ha+e)™?
=([H, Yat— ‘?tga,t] —l4a( Yat— ‘9tga,t)) (H+e) L (7.36

The extraterm involving I', gives no contributionin the limit t—oo sinceby Lemma7.4 (ii)
|T.(x)|<constt™% on sSupp@a, ). Therefore,t sufficesto prove convergencef

‘Pt:(Ha+c)_leiHat7a,te_th(H +e) 7y,
wWherey, 1= va1—2d8a; - Insteadof (7.33 we thenobtain
der=(Hat+c) e (D7, —il,7a)e M(H+e) 'y

Herethe term involving |, givesan integrablecontributionof ordert °*. The restof the proof
goesthroughbecausehe propagationestimate(7.23 also holds for the dynamicsgeneratedy
H,. O
Proof of Theorem 7.1: For ¢ € Hg the asymptoticcondition (7.2) is trivially satisfied.Since
the subspace${, (A a Mourre interval) span’ it sufficesto show that every e H, is an
outgoingscatteringstate.Then,by Lemma?7.7 and Theorem?7.6,

_ + eltty, @-iHt,
W a;()} Ya ¢ 320} Va8 Mo

wheretherelation~ meanghatthe differenceof the two relatedexpressionsanishesn normas
t— +o. By Theorem7.8
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l//t:efthl//%a;o} efiHateiHat,ya’tefth(p
*ago} e Moy pa=w, . (7.37)

This lastrelationis calledasymptotic clustering: the differencefrom (7.2) is thatthe ¢, neednot
bein H,. We now invoke the inductionhypothesighat asymptoticcompleteneshkoldsfor all H?
with a>{0}, which is trivially satisfiedfor a=X. This is equivalentto sayingthat for any ¢,
eH

e Melga~ 2, e Mgy paneL%(b)©Hp(H).
Insertingthis into (7.37) gives

(r//th eiiHbtz Pab »

b a<b

which provesye H . O

E. The long-range case

A strategyto deal with the long range casewas developedin Refs.93 and 94 and imple-
mentedin Refs.19 and95. Herewe describeit in the form usedin Ref. 52 to prove Theorem?7.2,
andwe referto thatprooffor a centralpartwhich is tootechnicalto be discussedn a shortreview.
In the long-rangecasethe occurrenceof weakly time-dependentHamiltonians,e.g., in (7.9
suggestan inductive schemefor Hamiltoniansof the form

H,=H+W,(x) on LX), (7.38

whereH is the original N-body Hamiltonianand W,(x) is an external,time-dependenpotential
which, in the reductionprocessdescribedelow, will be generatedy the long-rangetails of the
interclusterpotentialsf,(x). Thereforethe conditionson I';(x) and W,(x) arelinked in the fol-
lowing way:

| KIa(x)|<consix|; # ¥ (|x|g—); (7.39
|7 Wi(x)| <const1+t+|x|) K. (7.40

In contrasto (7.39, thebounds(7.40 areglobalboundsholdingfor all x e X andall t>0, and|k|
alsocountsthe derivativeswith respecto t. The simplereductionH— H, usedin the short-range
case(andinvertedin theinductionproof of Theorem?.1) is now brokeninto severalintermediate
stepsinvolving the following time evolutions (for the interval from zero to t>0) and their
generators:

U, :Hi=H+W,(x),
Da,t :ﬁa,t: Ha+Wa,t(x);
(7.4
Ua,t :Ha,t:Ha+Wa,t(pat+xa);
Uai:Har=Hat W, (pat).

Here W, ;(x) is definedby
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Wi 1(X) = (1a(X) + Wy(X)) Xa,1(X), (7.42
where x, ;(x) is a smoothedcharacteristidunction of the set
{XlIxI>(1+0Re;  [x[a=x]* 7} (7.43

with >0 arbitrarysmall,and R, is the (arbitrarylarge constantappearingn the Graf~Yafaev
construction(Lemmas?7.3 and 7.4). In the region (7.43 the clustersare separatedy a distance
growinglike to(~#) sothatW, ;(x) inheritsthelong-rangepartof I,(x) andis nonzeroevenif we

startwith W,;(x)=0: this is the reasorfor the generalizednductionschemeln the evolutionU, ;

the centers-of-massf the clustersarepositionedat x, = p,t, correspondingdo the classicalpicture
(7.7). The generatingHamiltonianH, , commuteswith p, andcanthereforebe analyzedon fibers
of constantp,= ¢ e a, whereit reducego the operator

Ha (6)=H3+ 3E2+ W, (ét+x%) on L%(at). (7.44

Moreover,it sufficesto performthis analysisfor the fibers éea* (3.9) for which | ét|,—« ast
— oo, Then the potential W, ,(£t+x?) on a* essentially inherits the properties (7.40). [Theirrel-
evant differenceis that the exponent— (w+ |k|) is changedby a factor (1—&) coming from
(7.43.] This allows aninductive proof of the following theoremwhich reduceso Theorem7.2 by
settingW,(x)=0 (after performingthe induction.

Theorem 7.9: If (7.39) and (7.40) hold for 0<|k|<2 and some u>v3—1, any e H is an
outgoing scattering state in the sense that

Upp— > e HallaaiPal g, (1 +o0), (7.45

-a

where ¢, e H,=L%(a) ® Hg(H?) and

t t
aa1(Pa) = ft ( )dS(la(paS)+Ws(pa3)) (@a>{0}); aj.= fodsws(o)- (7.46
olPa.
In theremainingpartof this sectionwe describehe mainstepsof the proof following Ref.52.

1. Construction of U,

SinceW, is boundedthe operatorsH, are self-adjointwith constantdomainD (H)=D(p?).
Therefore, H, generatesa unitary propagatorU, : ¢s— i, for the interval 0,...t where (p?),
<constH+c¢),. SinceDx=p it still follows that the domainD(|x|) ND(p?) is U,-invariant. A
usefulconceptis the asymptoticenergy

H*=lim U, *H,U,=limU, *H U,, (7.47

t—oc t—oo

which existssince| d,W,||=0(t #~1) isintegrablein t. H is self-adjointon D(H) andhasthe
samespectrumasH.

2. The basic propagation estimate

In (7.19 the operatory,; remainsunchangedout i[ v;,V] receivesan additionalterm Vg,
-VW,~1~ %1% Thereforethe propagatiorestimate(7.23 still holdsfor & in the range

3<6<1; S(p+1)>1, (7.48

provided that (7.39 and (7.40 hold for some x>0 and |k|<1. Under these conditions the
existenceof the asymptoticobservable
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y =s—lm y(1); y(t)=U; 5V,

t—x

(andsimilarly for y,) follows asbefore.In the first stepof that proof (H+¢) =2 is replacedby
(H"+¢) %, which thenleadsto

[y".H 1=[7, .H"]=0. (7.49

All the otherpropertiesof y*,y, listedin Theorem7.8 remainunchangedin particulary® and
v, areindependenbf the choiceof the scalingparameters in the range(7.48).

3. Deift—Simon wave operators

This is the only placewherethe condition u>1 wasusedin the short-rangecase Following
Ref. 20 we factorize

e li -1 gyttt
(Ua =8 Ilm Uﬂ,t ’ya’tUt—Wa wﬂ y

t—x

w, =s—lim U, {U,,; (7.50

t—x

Zo;zs—llm U;tl’yatht .

t—x

+

The limit @, is establishedike w, in the short-rangecase,but in place of the term la( Vat

—di8ay) in (7.36 we now obtain

(Hy=Ha ) (Yar— 380 = (la+ W) (1= Xa ) (Yar— i)

This expressiorvanishesexactlyfor sufficiently larget, sincetheny, ;=1 on supp@a). As
aresult,, existsfor §in the range(7.48, providedthatthe limit w, existsfor §in the range

log<l, S(u+1l)>3 S(u+2)>2, (7.51)
andprovidedthat(7.39 and(7.40 hold for someu> % and|k|<2. The proof*°2usestheidentity
U gt Uapth=—1Ug {TWa 1(X) = Wy (pat +X*)1U 14,

wherethe middle factor canbe expresseds
1 it 1
[---]= JO ds VW, 1($Xat (1—8)pat +x2) - (Xa— Pat) + > fo ds A W, 1(8Xa+ (1—8)pat +x2).
This formula comesfrom evaluatingthe operatoridentity

t o d
£00-$(pt) = | s pipt+scx-po),

whichis linearin f andholdsfor f=expgk-x) by the Campbel-Hausdorffformula. The resultis
asfollows.
Theorem 7.10: For any a>{0} the Deift—Simon wave operator

wy =s=1lim U, 7a,U; (7.52

t—oe
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existson D(|p|) for §in the range (7.51), provided that (7.39) and (7.40) hold for some >3 and
|k|<2. Asymptotic clustering follows as in the short-range case: For e Ran(y™")

Uip— D Ua1@a;@a=wq f  (t—+). (7.53
||| a>1{0}

We now cometo the inductionproof of Theorem7.9. The inductionhypothesiss thatasymptotic
completenesi the sensagivenby Theorem7.9 holdsfor thetime evolutionU, (&) generatedby

the Hamiltonian (7.44) for any éea*. After integratingover the fibers ¢ this amountsto the

hypothesighat for anya>{0} andany ¢, H

Ua,t‘Pa_> 2 e_iHbt_iab’t(pb)‘:"ab » Pap€Hy,

Ib=2

ast— +. Insertingthis into (7.53 it follows that any e Ran(y™) is an outgoingscattering
state.However,with all this preparationwe haveonly clearedthe pathto the hard core of the
long-rangeproblem: to prove that (7.45) also holds if y* ¢=0.

Theorem 7.11: Let " =0 and suppose that (7.39) and (7.40) hold for some u>v3—1 and
|k|<1. Then for t— +o0

utmefim*”g”sws(“w; e Hg(H). (7.54

For a proof we referto Ref. 52 or to the original proof in Ref. 19 (seealsoRef. 20, wherethe
sameproblemis dealtwith in a different form). Basically the problemarisessincestrict energy
conservations lost for the dynamicsgeneratedby H, : thresholdsandembeddeeigenvaluesf H
cannotbe avoidedby restrictingthe analysisto suitableenergyshellsA asin the short-rangecase.
Essentially,a statey with y* =0 propagatesinderU, in a region |x|<constt’ with 0<5<1,
and (7.54 showsthat this is only possibleif ¢ is a boundstateof H. The still ratherinvolved
estimatesvhich are usedto establishthis fact also allow us to prove the existenceof the long-
rangewave operatordan full generality:

Theorem 7.12:1%12252 g ppose that (7.39) and (7.40) hold for some u>v3—1 and |k|<2.
Then the wave operators

e i 1>
Q,=s—lim U, "U,,

t—oc

exist on H, for all aeL and have mutually orthogonal ranges.

Notes: Foracomprehensivéreatmenof scatteringheoryof classicaandquantumN-particle
systemsseeRef. 21, wheremanyadditionalreferencesanbe found.N-body scatteringheoryfor
potentialswith strong(repulsive singularitiesis treatedin Refs.56, 11, and 39.

Presentlya considerableeffort is underway to developan extensionof microlocal analysis
coveringN-body scatteringheory’! 7241105107 which in particularleadsto a betterunderstanding

of the singularitiesof the N-body scatteringmatrix.

VIiI. HIGHER ORDER MOURRE THEORY

The resultsof this sectionfollow from Mourre’s inequality underthe additionalassumption
that the multiple commutators

ad®(H), k=1,...n, (8.1
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are H-boundedfor somenumbern>1 dependingon the context. The analysiswill be quite
general,i.e., not restrictedto N-body Hamiltonians.However,we will be somewhatcavalierin
handlingcommutatorsbetweenunboundedoperatordike (8.1). For a rigoroustreatmentof this
point we referto Ref. 62 and especiallyto Ref. 6.

The resultson resolvent smoothness statethat for certain operatorsB e L(+) and for the
resolventR(z) =(z—H) ! the holomorphicfunctions

z—F(z)=B*R(z)BeL(H) on C*={z|*Im(z)>0} (8.2
are boundedand haveboundaryvalues

F(x*xi0)=IlmF(x*ic)eL(H)
e\,0

in norm sensefor x in any Mourre interval A (6.17 with a certaindegreeof smoothnessn x.

Boundaryvaluesof this type are relevantfor many dynamicalaspectdnvolving the continuous
spectrunof H, e.g.,for the perturbationof embeddeaigenvaluegFermigoldenrule) andfor the
transitionto time-independenscatteringtheory (which is not yet fully developedfor N-body
systems The notion of local decay is relatedto resolventsmoothnessn the following way. If

| CR is compactand coveredby (finitely many Mourre intervals,thenit follows from resolvent
smoothnesshat

|BEy(H)R(z)Ey(H) B*||<const 8.3

uniformly in ze C*. Therefore the operatorB E,(H) is H-smooth,which is equivalentto
+ o0 )
f dt||B e "Hy||?<consi ¢|? (8.4

for all y=E;(H)y (seeRef. 81, Vol. IV, TheoremXIll.25 and Corollary). Equation(8.4) is
generallyreferredto aslocal decay sinceit wasfirst derivedfor Schralinger Hamiltonianswith
B=(1+x%)"°, a>%">"°This resultrequires(8.1) only for n=2 andwill be discussedirst. For
any self-adjointoperatorA we usethe notation

(A)=(1+A?%)12 (8.5

Theorem 8.1:7>7 Suppose that ad{¥(H) is H-bounded for k=1,2. Let | CR be a compact
interval covered by Mourre intervals, and

I"={zeC"|Re(z) el}.
Then for any a> 3 the function
F(z)=(A) “R(z)(A) “€L(H) (8.6
on | = has the properties
IF(z)||<const; 8.7

2a0—1

_E())< — 4B g=
IF(2—Fz)l<constz—z'|/,p=5 —.

(8.9

In particular the boundary values F(x*i0) exist in norm sense for xe ¥ and have bounds cor-
responding to (8.7) and (8.8). Moreover,(8.7) implies the local decayestimate



3498 J. Math. Phys., Vol. 41, No. 6, June 2000 W. Hunziker and I. M. Sigal

| arigay e yip=const? 8.9

for «>3% andall y=E,(H) .
Corollary 8.2: Let f e Cy(R) be such that supp(f') is covered by Mourre intervals. Then for
any «> 3 the function

F(z)=(A) “f(H)R(2)f(H)(A) " “,

now defined for all ze C*, also satisfies the estimates (8.7) and (8.8), with corresponding prop-
erties of the boundary values F(x=i0) on R.

Proof: It sufficesto considera in 3<a<1. Let I be a compactinterval containingsupp(f)
in its interior, but still coveredby Mourre intervals. For Re@) ¢! the boundsare trivial. For
Re@) el theyfollow by factorizing

F(2)=(A) “F(H)(A)(A)*R(@)(A) (A f(H)(A) "7,
since
(A)"“F(H)(A)* e L(H) (8.10

for O<a<1. It sufficesto checkthis for «=1; the generalcasethenfollows by complexinter-
polation(Ref. 81, Vol. ll, Appendixto IX. 4). For =1 onecanuse,e.g.,the Helffer-Sjostrand
formula (9.1) for f(H) andthe fact that[H,A] is H-bounded. O

Corollary 8.3: Let H be a Schrodinger operator on H=L2(X) and A be the dilation genera-
tor. Then (A) ™ ean be replaced by (x)~* in Theorem 8.1

Proof: Again it sufficesto takea in 1/2<a<1.Letge Cy(R), g=1 on | andsupp@) still
be coveredby Mourreintervals.By factorizing(x) “g(H)=(x) “g(H)(A)“*-(A)~ * andassum-
ing that

(A)g(H)(x)"“eL(H), (8.11

it follows that the function F(z)=(x) " “g(H)R(z)g(H) (x)~* satisfies(8.7) and (8.8). For
Re@) el the factorsg(H) canbe removed.To prove (8.11) it againsufficesto take a= 1.
O
To preparethe proof of Theorem8.1 we estimatethe resolvent

Ry(z)=(z—Hg) %, H,=H-isB; B=i[H,A]. 8.12

This partusesonly the Mourre inequality and the conditionthat B is boundedrelativeto H.
Lemma 8.4: Let | be a compact subset of a Mourre interval A. If B is H-bounded, there exist
eonstants sy,e,>0 such that

IRs(2)]|<e;8* (8.13

for 0<s<s,, uniformy inzel™.
Proof: Let E\=E,(H) andE,=1—E, . For Im (2)=0 the Mourre inequalityimplies

Im(Ex(z—HG)EL)=S0E, .
Therefore,

|EA(z—Hg)ul|=|Ex(z— Hg)E zul — 8| EABE u|

=86/ Exu —sMy[[Equ
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sinceE,B is boundedIf Re(z)el, then|(z—H)E u|=¢|E,u| for somes>0. Settinge = \/s
with s sufficiently small we find

|Es(z—Hg)u| =] (z— H)E4(1+isR(z)B)u|
=s1?|E,(1+isR(z)B)ul|
=Y E yul| — $32M | ul|

since E\R(z)H and thereforeE,R(z)B is boundeduniformly in ze*. Combining the two
estimateswve arrive at

|Ea(z—Hyul +[Ea(z—Hy)ul=(s6—$¥My)[E sl + (s°— $My — $¥M ) [E s

=$M (|| Ezul| + | Eul)
for someM >0. This implies
[(z—Hg)u|=sc,|lu| for some ;>0

and (8.13 follows sinceze p(H,) for s sufficiently small. O
Lemma 8.5: In the situation of Lemma 8.4, |Ry(z)u||? and ||R% (z)u|? are bounded by

ca(s™ H[Im (u,Ry(z)u)| + u] %) (8.1

for all ue H and 0<s<s,, uniformly in ze ™.

Proof: Since(z—Hg) —(z—H3)=2i(Im(2)+sB) for Im (z)>0 we obtainthe two estimates
1 * * . 1 * *
i RE~Ry=R{BR;; 5. (R{—Ry)=RBR; . (8.15

In the first caseR} BR; is boundedfrom below asfollows:
(u,R: BRgu) = (R, E\BE yRgti) + (Rgti, EoBE \Ryi) + (E\Rgd, BRgl)
= 6| EsRgu| 2 — M| |u (| Rgta]| + [[u]). (8.19
Thefirst term comesfrom the Mourre estimate In the remaindemwe haveusedthat
E R,=E,R—iSE,RBR;

is boundedor smalls uniformly in ze 1 *. This follows from (8.13 andfrom the fact thatEARB
is boundedFrom (8.16) and(8.15 we obtain

0] EsRsu||?< const(s™|Im (u,Rgta) | + || || Rgual| + | ] ?),
which implies
| EARsl||?< const(s ™ Im (u,Rgu) | + | u]?). (8.17

The bound (8.14) for |Rul|? now follows since E,Ry is boundedfor small s uniformly in z
el™. The bound(8.14 for |R¥ul? follows from the secondinequality (8.15). O

Proof of Theorem 8.1: ° We considerthe caseze I'*. By a coveringargumentve canassume
that! is containedin a single Mourre interval A. We definethe operators

ps(A)=(A)"(sA)* ",

(8.18
Fy(2)=ps(A)R(Z2)ps(A),
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for 0<s<sy; ze|™. For F¢(z) we will derivethe differential inequality

d
‘ 12| = const(1+s* 1) (s Y Fy(z)| Y2+ 1). (8.19
This inequality givesthe bound
[Fs(2)] =< const, (8.20

sincethe function $*~3? is integrableat $=0 for o> 3. Substituting(8.20 backinto (8.19 we
obtain

|F(z)—F4(2)|< consts®* 2, (8.21)

The bounds(8.20 and (8.21) prove (8.7). The differential inequality (8.19 is basedon the
following estimatesFirst,

dpS a—1
‘E‘ < consts® ™ . (8.22

Secondby Lemmas8.5, both ||psR¢(2z)| and|Ry(z) p4| haveboundsof the form
const(s Y F(2)||*2+1). (8.23

Equation(8.19 is now obtainedfrom

il‘; (Z)Z%Rp +pR%+p[AR]p —ispgR{ B,A]R¢p (8.29
ds S dS SIS S Sds S 1TRS. S S$'Sl ’ SH'S " "

We note that in the last term (and only there the double commutator[[H,A],A] appears.lt
follows from (8.22 and(8.23 thatall termsin (8.24) haveboundsof the form (8.19. In particu-
lar, the terminvolving [ A,Rg] is estimatedusing

|Apd=llpsAll=<[(A)*~*(sA)* *|< consts” ™.
This concludeshe proof of (8.7). By the resolventidentity and (8.23),

[Fs(z)—Fg(z')l[<consz—z'| [ psRe(2)[ [Rs(z') ps
< consts !|z—7'|. (8.25

Combiningthis with (8.21) we find

IF(2)—F(z")|<|F(z) - Fs(2)|+ [Fs(z) —Fs(2z') |+ |Fs(z') - F(2')|
< const(s® Y%+ |z—z7'|s ).
Equation(8.8) now follows by settings=|z—z'|", n=(a+3 L O
We concludethis sectionwith someresultsconcerninghe stability of the precedingestimates
undersmall perturbations

H—H,=H+«kV, «keR,

whereV is any symmetricoperatorsuchthat the commutators
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ad®(v), k=0.,...,2, (8.26)

are H-boundedHere H,. is self-adjointfor small k andR, (z) denotesheresolventof H,. We
beginwith the stability of the Mourre estimate(6.17).

Lemma 8.6: Let A be a Mourre interval for H and A’ a closed subinterval of A. Then there
exist constants #' >0 and ¢>0 such that

EA’(HK)E[HK,A]EA’(HK)B0,EA’(HK) (an
for all «with |«|<e.

Proof: Let feCy(A) with f=1 on A’. Equation (6.17) implies that f(H)i[H,Alf(H)
= 9f2(H). By the Helffer—Sjostrandformula

F(H,)—f(H) =« f 4T (DR(2)VR(2),

wherethe integral represents boundedoperatorH—D(H); D(H) equippedwith the H-norm.
Therefore,andsince[V,A] is H-bounded,

f(HK),[HK ’A]f(HK)B efz(HK) —constk

for small . Multiplying this from both sideswith E,/(H) yields (8.27) with 8’ = 6—const«>0
for small . O
Using this resultit is straightforwardto extendthe estimatedeadingto Theorem8.1 from H
to H . for small x, with constantsndependentf . We will referto someof theseestimatesn the
proof of the following stability result:
Theorem 8.7: In the situation of Theorem8.1 let H,=H + «V, where V is symmetric and has
H-bounded commutators

ad®(v); k=0,...,2.

Let | be a compact interval covered by (finitely many) Mourre intervals. Then for a>3 the
function

(1,2)—=F (2)=(A) “R(2)(A) “eL(H),
defined for small « and ze =, has the properties
|F.(z)|<const, (8.28

2a—1

(7)) — < — ! _'"\B =
IFe (')~ Fu2)|<eonst|x—«'[+]z=2'])F, B=5_—7

(8.29

In particular the boundary values F,(x*i0) for xe| exist and are Holder continuous in («,xX).

Proof: Againwe mayassumehat! is containedn a Mourreinterval A. We considerthe case
I'" and prove Holder continuity in «, which is the new elementnot presentin (8.8). Beginning
with (8.12 we replaceH by H,., defining

H=H,—isB,, B,=i[H,A]l, R(2)=(z-H,) %

andnoting thatfor small «, s the operatorsH, ¢ areall uniformly boundedrelativeto eachother.
As aresultthe function

F,s(2)=ps(A)R,s(2)ps(A),
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definedfor small x, smalls>0 andze | *, satisfiesthe estimate$8.20 and(8.21) uniformly in «.
To prove Holder continuity of F ¢ in « we usethe identity

RK’S_ RKSZ RKS(HKS_ HK’S)RK’S’
Hs—Hs=(k—«")(V+S[V,A])=(k—k")Wg,

wherethe operatorWg is boundedrelativeto H andthereforeto H ¢ uniformly for small «, s.
Therefore,

||PKS(Z)_FK’S(Z)chonStK_ KI| HPSRKS” ”WsRK’sPs”
<constk—«k'|s 1

by the bounds(8.23 and(8.20 for R, andF . This correspondso the estimate(8.25 usedto
prove Holder continuity in z, so thatHolder continuityin « of F,(z) follows in the sameway ]

A. The Fermi golden rule (FGR) and instability of embedded eigenvalues

In the frameworkof spectraldeformationwe havefoundthe following instability criterionfor
an embeddeckigenvalue\ of H with eigenprojectionP undersmall perturbationsH—H,=H
+ kV:

1. FGR criterion
Let P=1—P and R(z)=PR(z)P. Then

I'=—Im(PVR(\+i0)VP) (8.30

exists, which implies I'=1"* =0. If I'>0, then there exists an open interval A = \, such that the
spectrum of H, in A is absolutely continuous for small «# 0.

This criterion makesno referenceto spectraldeformation,and canin fact be establishedn
the basisof Mourre’s inequality? The situation considereds the following: H and A are self-
adjoint operatorssuchthat[H,A] is H-bounded.ACR is an openinterval for which thereis a
Mourre inequality

E(H)i[H,A]EL(H)=6E,(H)+K, 6>0, (8.31)

andK is a compactoperator € A is aneigenvalueof H with eigenprojectiorP. It follows from
(8.3)) thatdim(P) <« andthat\ is the only eigenvalueof H in A if we chooseA s \ sufficiently
small. The resultof this sectionis the following.

Theorem 8.8:3 In the situation described above the FGR criterion holds if the commutators

ad®(H) and ad®(v) for k=0,1,2 (8.32
are H-bounded, and if
RanPCD(A?). (8.33

Remark: This resultappliesto N-body HamiltoniansH, whereA is the dilation generatoiand
\ is any nonthresholdeigenvalueof H. Equation(8.33 then follows from the Froese-Herbst
exponentiabound(Theorem6.6).

For the proof of Theorem8.8 we work with the fixed reductionof H given by

1=P+P:H=MaM, (8.34

andwe definereducedoperatorsM — M
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H.=PH.P, RJ(2)=P(z—H,) 'P,
(8.35

The first stepis to establishthe correspondindviourre estimateon M:
Lemma 8.9: There exists an open interval A s\ and constants >0, ¢>0 such that for | «|
<e
EA(H)i[H, AlEA(H,)=0E(H,). (8.36

In particular, H, has no eigenvalues in A.

J— — 8
Proof: Multiplying (8.31) from both sideswith E,(H) andusingthefactthatE,(H)—0 for
A—{\} we seethat (8.36 holdsfor «=0. Next we notethat the commutators

[H,A]=P[H,A]P,
[V,A]=P[V,A]P—P(VPA—APV)P
areboundedrelativeto H. Therefore(8.36) is a consequencef Lemmas.6. O
Lemma 8.10: Suppose that for some fixed « in 0<|«|<e, H, has an eigenvalue u € A with
eigenvector . Then
IM(¢,PVR (A +i0)VP)=0. (8.37)

Proof: In the reduction(8.34) the equationH = w ¢ is equivalentto two equationson M
andM:

PH, Py+PH, Py=uPy; PH, Py+PH, Py=puPiy. (8.39
SincePH, Py = kPVPy the secondequationcan be written as
R (u+is)kPVPy=Py—icR (ju+ic)Py

for £>0. The last term vanishesas e —0 since,by Lemma8.9, x is not an eigenvalueof H, .
Therefore

Py=kR (1 +i0)PVPy.

Insertingthis expressiorfor Ed/ into thefirst equation(8.38 andtakingthe scalarproductwith ¢
we find

(N =) (PP + k(4 PVP ) + 1P, PVR (e +i0)VPy) =0.
Equation(8.37) follows by taking the imaginarypart. O

Lemma 8.11: There exists an open interval A s> \ and a constant ¢>0 such that for | x| <c the
boundary values

F,.(X)=PVR,(x+i0)VP (8.39
exist for all xe A and satisfy

[F(x)—F, (x")|<const|xk— «'|+|x—x"|) . (8.40
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Proof: For Im(z)>0 we factorize
F.(2)=(PVP(A))((A)'Ry(2)(A) )((A)PVP). (8.4

Herethe first and last factorsare boundedsinceAPVP e L(H). To seethis we expand

APVP=AVP—APVP *)
wherethe superscript(*) indicatesthat the operatoris bounded Also

AVP=VAP+[A,V]P*),
andsinceV is H-boundedit sufficesto notethat

HAP=XNAP®)+[H,A]P™).

Lemma8.11 now follows from Theorem8.7, applied to the middle factor in (8.41). The
hypothesisof thattheoremrequiresthat the first and secondcommutatorof A with H andV are
boundedelativeto H. As an examplewe treatthe doublecommutatof [ V,A],A]. After dropping
the outermostfactorsP this commutatortakesthe form

[[V,A],A]+2APVA +2AVPA —2APVP A— APAV —VAPA + VPAPA—VPA2— A’PV
+APAPV.

By hypothesig[V,A],A] is H-boundedAll othertermsexceptthosecontainingA? are easily
bounded as in the first part of the proof. For the A2-terms we need the hypothesis
Ran(P) CD(A?). O

Proof of Theorem 8.8: By Lemma8.11thelimit (8.30 exists.Supposéahatl’>0. Then,in the
notation(8.39,

—Im(Fo(\+i0))>0,
andthereforeby (8.40
—Im(F (n+1i0))>0

for small k andall x in someopeninterval As \. Thisis in contradictionto (8.37), so for small
k the operatordH,, haveno eigenvaluesn A. O

B. Escape velocity and resolvent smoothness

According to Theorem2.4 the orbits ¢, in the continuousspectralsubspaceH of H are
escapingrom finite regionsin X in the meanergodicsensg?2.8). In this sectionwe discusssharp
quantitativeescapeestimatesf the form

flx< t|e/;,(x)|2scons(1+|t|)‘2m, (8.42

valid for a densesetof initial statesy in any spectralsubspacé-., A a Mourre interval (6.17).
This estimatesaysthat the orbit ¢, escapeat leastwith velocity v. In fact (8.42 holdsfor any
v<+/60 where ¢ is the Mourre constant(8.42 for the interval A. In this sense\/¢_9 is the minimal
escape velocity for the orbits in H. Minimal velocity estimateswere first derived by Sigal and
Soffe’? alsofor certaintime-dependentamiltonians.The first steptowards(8.42 is an analo-
gousresultfor the observableA insteadof |x|, which we statein abstractform:

Theorem 8.12:3 For a pair H,A of self-adjoint operators on H suppose that
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ad®(H) is H—boundedfor k=0,...n>2, (8.43
and let ™ be the characteristic function of R*. Then
[x (A—a—ot)e 'Mg(H)x" (A—a)||<constt ™(t>0) (8.44

for any ge Cy(A), any 9 in 0<9< 6 and any m<n-—1, uniformly in ae R.
Remarks: To explainthe significanceof (8.44) we notethatthe vectorsof the form

y=g(H)x"(A—a)e, ¢eH, (8.45

form adensesetin H, sinceg e Cy(A) anda e R arearbitrary.Equation(8.44) expressethefact
that for any initial state of this form ¢, is in the spectralsubspaceA=a+ 9t of A, upt oa
remainderof ordert ™™ in norm. This is the analogof (8.42 for the observableA in placeof |x|.

Theorem8.12 can also be usedto derive some useful, although not optimal, results for
resolventsmoothnessSettinga= — 9t/2 and using that

(A" =(A) %" (Ax 91/2)+ Ot~ %)
we concludefrom (8.44) that
[(A)~ e~ "™'g(H)(A) | <const1+]t]) ~mnm, (8.46

For o, m>1 (i.e.,n>2), this boundis integrableover — o« <t<+« andthusleads(via Fourier
transforn to the resolventestimate

sup[(A) " *(z—H) tg(H)(A) [ <. (8.47
zZ¢R

It alsofollows thatthe operatorfunction F(z) =(A)~%(z—H) X A)~« hascontinuousboundary
valuesF (x={0) in normsensdor xe A. With Theorem8.1 we havealreadyobtainedthis result
underthe weakerhypothesise > andn=2. On the otherhand, Theorem8.12immediatelygives
similar boundsfor the derivatives(powers of (z—H) 1. If (a,m)>1+p, then

sup
z¢R

<o (8.48

d p
<A>“’<5) (z—H) 'g(H)(A)~*

with correspondingmoothness x of theboundaryaluesF(x=i0) in A. Resolvensmoothness
estimatesof this form havebeenderivedin Ref. 62 underweakerconditionson «,m by time-
independenimethodsas in the proof of Theorem8.1. All thesetechniquesand resultswill be
useful in many respectse.g., for the transitionto time-independenscatteringtheory and the
discussionof scatteringamplitudes.Finally we return to the Schrainger caseH = p?+ V(x)
wherethe relation

A=Dy(3x%)
canbe usedto transformthe spectralshift formula (8.44) with respectto A into a spectralshift
with respectto x2:
Theorem 8.13:3* If H,A given above satisfy the conditions of Theorem 8.12, then

[x (3x?—at— 9t?)e Mg(H)x " (A—a)||<const ™ (t>0) (8.49

for any ge Cj(A), 0<9<6, m<n—1and aeR.
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For the densesetof initial states(8.45 this impliesthe escapeestimate(8.1). For the proofs
of Theorems3.12and8.13we referto Ref. 54. The methodsusedin theseproofsalsoallow usto
treattime-dependentamiltonians’?

Notes: Resolvent bounds and resolvent smoothness. Among the papersin this field which are
not reviewedherewe mentionRefs.62, 35, 58, 61, and 74. A basisfor treatingtheseandrelated
problemsin a generalizedorm of Mourre’s theoryis providedby Ref. 6.

Resonances in Mourre theory. Beyond the instability criterion for embeddedeigenvalues
given in Theorem8.8 it is also possibleto give a perturbativenotion of resonanceand corre-
spondingexponentialdecayestimatesn this case’’1%2

Escape velocity and resolvent smoothness. Other resultssimilar to Theorems8.12 and 8.13,
generallyreferredto asminimal velocity estimates, aredueto Refs.33 and100 (seealsoRef. 21).

IX. THE HELFFER-SJOSTRAND FORMULA

A convenienbperatorcalculusfor functionsf(A) of self-adjointoperatorsA canbe basedon
a formula of Helffer and Sjostrand*21©

1 =
f(A):_ZfRz(z_A) d;f(z) dx dy, 9.0

wherez=x-+1y andd;= dy+idy . Heref is somegivencomplexfunctiononR, and} is alargely
arbitrary extensionof f to the complexplane,which mustbe almost analytic in the sensethat it
satisfiesthe Cauchy-Riemannequationson the real axis:

aF(z)=0 for zeR. (9.2)

We abbreviate(9.1) by writing

~ ~ 1 .
fa= [ df @MY dio=- 5 sf@axdy. 03
For example,if fe Cg(R), we canconstructthe almostanalytic extension

F()=(Fx) +iyf’ (x)) x(2) (9.4)

in Cé(C) by taking xy € C5(C) with y=1 on somecomplexneighborhoodf suppf). Then&ﬁ?
hascompactsupportandvanisheson the real axis, so that |&§f(z)| <consly|. On the otherhand,
[(z—A) ~Y|<|y| 1. Thereforethe integral (9.3) convergesabsolutelyin norm senseand (9.1)
follows by verifying that

)‘"g(t)ffpgtﬁ(z)(z—t)1

convergegointwiseto f(t) for te R ase\ 0. Oftenit is usefulto replace(9.4) by the extended
version

n Lok
Fo=x22> f“kx)ﬂ, 9.5
k=0 k!

with y asbeforeandn arbitrarylarge. Then|#,f (z)|<consly|" sothattheintegral f | Im(z)| ~"3;f(2)
convergesabsolutely.As an application,supposethat A; and A, are self-adjointand that K is
compactrelativeto A; or A,. Taking (9.5 with n=2 we find that the integral
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fd"f(z)(z—Al)*lK(z—Az)*l

is a compactoperatorsinceit is the normlimit of compactoperatorsThis argumentwasusedin

the proof of (6.16). Of coursethat particularcasecan be treatedwithout using (9.1). The reason
why we advertisethe Helffer—Sjostrandformula is that it also servesas the basisfor a general
methodof commutatoexpansiongndcommutatorestimates®>?which is usedextensivelyin the
omitted proofsin Secs.VI andVIII.
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