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RETURN TO EQUILIBRIUM

Notes by I.M. Sigal

Abstract

We consider a system of quantum particles in a confining potential coupled to a
thermal reservoir at a temperature 7' > 0. The reservoir contains black-body radiation
of photons or phonons described by a massless free field Hamiltonian. We show that,
starting at any normal state associated to the temperature 7', the total system converges

to equilibrium as t — +oc. The latter is described by a KMS state at the same temperature.

1. Introduction

In this paper we study the problem of dissipation in quantum mechanics. The problem
is to analyze the behaviour of a small system, i.e., of a system with a finite number of
degrees of freedom, called the particle system, coupled to a system of an infinitely many
degrees of freedom, called the reservoir. One would like to show that, starting with an
arbitrary state of the particle system and an equilibrium state of the reservoir, the coupled
system converges to an equilibrium state of the total system. The latter state must have
the same temperature as the reservoir. The system is then said to return to (or approach)
equilibrium.

In this paper we prove return to equilibrium for all temperatures (in fact, uniformly
in temperature), for arbitrary particle systems in confined potentials (see Eqn (2.2) for
a technical definition) and for reservoirs consisting of either photons (quantized electro-
magnetic field) or free phonons (quantized oscillations of crystal lattices). Though our
confinement condition, Eqn (2.2), can, probably, be weakened, it cannot be removed al-
together: a particle system with a continuous spectrum (besides the discrete one) will be

“ionized” by an interaction with the reservoir and would, presumably, be committed to a
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Brownian motion rather than approach equilibrium.

The programme of mathematical understanding the phenomenon of dissipation, or
friction, in classical and quantum systems was formulated by Tom Spencer and the last
two authors, several years ago. It was successfully studied by V. Jaksi¢ and C.-A. Pillet
[JP1-5] who, in particular, have shown that systems with finite number of states coupled
to a free phonon reservoir approach equilibrium at sufficiently high temperature, provided
the interaction satisfies a certain rather rigid condition (see [Am, Arl,2, D1,2, FNV1,23,
HS1,2, Ma, Pu, Rol,2, SDLL, SpD] for earlier results). Moreover, these authors for the
first time have systematically treated the problem of return to equilibrium as a spectral
problem for the Liouvillian operator (or equilibrium Hamiltonian, in the terminology of
[Rol]). They identified the latter problem with a problem of resonances, and applied
spectral deformation techniques to tackle it. The spectral deformation used was a complex
translation in the length of the reservoir wave vector. It is the choice of this transformation
that caused the rigid requirement on the interaction term mentioned above.

In this paper we adopt the spectral approach of [JP3] and combine it with the methods
of complex rotation and the decimation transformation and the renormalization group
developed in our earlier work [BFS1-4] on a related subject. In conclusion of this review
we mention especially one feature of our mathematical picture — it is continuous with
regard to the temperature, T', even at T = 0.

The paper is organized as follows. In Sections 2 and 3 we describe the physical
models we treat and in Section 4 we formulate the problem of return to equilibrium and
present our main results. In Section 5 we reduce the problem of return to equilibrium
to a spectral problem for the corresponding Liouvillian operator, L. In Sections 6-12 we
review the construction of L. This construction as well as the result of Section 5 is due to
[JP3]. In Section 13, we identify the domain of L and establish some relative bounds on
the interaction part. In Section 14 we introduce our spectral deformation transformation
and study the deformed Liouvillian operator. In Section 15 we review the definition and
properties of the decimation map and in Section 16 we apply it to the deformed Liouvillian
operator. Results of the latter section are used in Section 17 in order to obtain bounds on

its resolvent. The latter bounds are used in Section 18 to study the evolution generated
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by the Liouvillian operator and to actually prove our main results in Section 19. Certain
explicit computations related to the KMS states and Fermi Golden Rule are carried out
in the appendices.

Units. All the quantities appearing in this paper are dimensionless. In the case of

2

photons, the particle coordinates, , are measured in units of the Bohr radius rpon, 1= — =,
. . 2 2 . . 4 2.2
the photon wave vector, k, in units of %5, and the energy in units of %z = (%) me?,

which is twice the ionization energy of the ground state of the hydrogen, i.e., 2 Rydberg.
Here m and e are the electron mass and charge, respectively. In these units the perturbation
parameteris A = Va? K, where a = ;—26, the fine-structure constant, and K is the ultraviolet
cut-off in the interaction term. The physical value of a is = 1;)—7, but it will be treated as

a small, dimensionless parameter.

In what follows D¢(A) stands for the form domain of an operator A.

2. Hamiltonian

In this section we describe the Hamiltonian of a confined particle system coupled
to either photons or phonons. The nature of the particle system is inessential for the
considerations below, and therefore we do not specify it. All that matters is that it is

described by a Schrodinger operator
N

B =3 V() (2.1)

j=1"""

in a box B = [0, R]*"N with Dirichlet or periodic boundary conditions. Thus H? acts on
the state space H2 := L*(B). Here m;, z; and p; = —iV,,; are the mass, position and
momentum of the j-th particle (j = 1,...,N) and z = (21,...,zy) € R*¥. Moreover,
the potential V(z) : R®*¥ — R, is assumed to be of the Kato-type. Next we make a rather

technical assumption:

rgﬁin |E; —Ej| >0, where {E;}5°=0(H?). (2.2)
i#]
N
Above, p* = %p?, and the superindex p stands the “particle” and the subindex
=1 "
B = oo, for the inverse temperature (then oo reflects the fact that for the moment we

consider the zero temperature case).



The reservoir is described by the massless free field Hamiltonian

H" = /w(k)a*(k)a(k)d?’k \

acting on the Boson Fock space H._ := F describing photon/phonon states. Here w(k) =
|k|, the photon/phonon dispersion law, and a*(k) and a(k) are photon/phonon creation
and annihilation operators acting on H’_. Of course, for photons, we deal with transverse
vector bosons, and, phonons, with scalar bosons. Hence the Fock space and the creation
and annihilation operators should be interpreted accordingly in each of these cases. In the
photon case the basic field is the quantized transverse vector potential,

A3k
) Vaw

with k- a*(k) = 0. In the phonon case we denote the basic field as

Ao(y) (e™"*¥a*(k) + h.c.), (2.5)

[ Pk
vol(y) = NG

We also introduce an ultraviolet cut-off and rescaling of size of A’ as

(e_ik'ya*(k) + h.c.) . (2.6)

A'=x*xA4y and ¢ = Y*pq, (2.7)

where y = x(k) is a € function of the size K~'/% and decaying sufficiently fast on the
scale K > 0, i.e., x(k) is of of the form K~'/2y(k/K) for some fixed function yo with
appropriate properties. We require y to be dilation analytic in the sense that y(e’k) has
an analytic continuation into a disc {z € C||z| < 6y}, for some 6y, as a vector function

d*k
0 — x(e?.) € L* (—2> :

w
6 2

Note that under our assumptions, the integral | Mcﬁk is independent of K. This is

the desired ultraviolet behaviour.

Now we are ready to introduce the Hamiltonian of the particle system coupled to the

reservoir:

) =3 o (i) 4 V) + B (28)

J=1



where p;j 4 = —iV,, — AA'(z;), for photons, and

N
Hy=H'+H +) oz (2.9)
1
for phonons. Both Hamiltonians act on the space
Hoo = HE @ HL, (2.10)

but in each case H._ has a somewhat different interpretation as described above. In Eqns
(2.8) and (2.9) we omitted various identity operators, e.g. the symbol H" really stands for
12 @ H", where 12_ is the identity operator on HZ_, etc.

Under the conditions on x and V() mentioned above the operators H'(A) and Hy are
self-adjoint for all A\, Hx on D(H)) = D(Hy), while for H'(A) the domain is not identified.
The relation D(H'(X)) = D(H'(0)) is proven for sufficiently small |A| (see [BFS4]). In
what follows we assume that |A| is sufficiently small so that H'(\) and H) are self-adjoint
on D(H'(0)) and D(Hy), respectively.

3. Pauli-Fierz transformation

For technical reasons Hamiltonian (2.8) is not suitable for analysis when one passes to
positive temperatures. To pass to a more convenient Hamiltonian we use the Pauli-Fierz

transform (as in [BFS2]):
H(/\) — e—i)\fZ(O)Hl(/\)ei)\f-K(O) 7 (31)

N _
where 7 = ) x; and A(y) = X1 * A'(y) with x;(k), a smooth fast decaying at oo function
1
independent of K and satisfying y1(0) = 1 and x}j(0) = 0. We also assume that § —
x1(e7?) € L™ is analytic in |f] < 6. Let g := \\/% To simplify notation we consider

only the one particle case, N = 1. The r.h.s. is explicitly evaluated in the following

Proposition 3.1. The operator H()) is of the form

H(\) = Zﬁgp—M(w))zw(z)@lg@

2
P10, 0 Hy = de B+ 200 [ lgulel
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where A(y) = A'(y) — A(0) and E is the electric field at x = 0:

E = /(ia —ia)wyg . (3.3)
Proof. Due to the property [A'(y), A’(z)] = 0, we have
¢~ IATA(0) (pj — A’(.rj))eMEE(O) = p; — M(z;) . (3.4)
Next, we compute
e~ IATA(0) 4 IATA(0) _ a+i\xg (3.5)
and therefore, using the definition of E,
e—iAfZ(o)HreiAfZ(o)
= /(a + i/\fJ‘g)*w(a + ifJ‘g)
= H —\zE+ K , (3.6)

1

where T+ is the projection of Z onto the plane k+ and

K = /(/\EJ‘)2|g|2w.
Using that |yt|2 = |y|? — (k - y)2, where k = k/|k|, and that

/(i{ - q)2dQy, = 27T|q|2/ cos” 6 sin 8d6
0

_ dm|q)?
- =L

where d€Q is the surface measure on the unit sphere |k| = 1, we obtain
- 2122 2
K = §/\ |z | lg|“w . (3.7)

(Remember that the integrals without limits and/or measure of intergration stand for
integrals over R®.) Collecting all the relations above, we arrive at (3.2). O

The advantage of H(A) compared to H'(A) lies in the fact that the new coupling
functions

G, = G, -G} (3.8)
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replacing the old one G (k) := e’*9x(k)/+/2w(k), have much better infrared behaviour.
Observe that Eqn. (3.6) implies that +Az - E < Hy 4+ K, which, in turn, yields that

I(Hf + K)™\2 e - E(H; + K)™Y? < 1. (3.9)

In what follows H stands for either H(\) or Hy whenever the expression in question
is valid for both operators. Also whenever we deal with an abstract situation H stands for
a general self-adjoint operator. Furthermore, H(®) will stand for either H(0) or Hy and v,
for either

= 1 A 2 2 2 2
AN [ A+ g A e B DIl [ 1G] @10
in the photon case, or

A () (3.11)

1

in the phonon case.

In order to simplify notation we assume N = 1 and treat only the phonon case.

This completes the description of the Hamiltonians of a particle system coupled to a
reservoir. It provides a mathematical framework for understanding dynamics of the total
system at zero temperature, T = 0. The convergence to equilibrium in this case means

that
e Pol(y, e T Y 5 (9o, ¥ as t — oo

Vi) € Hoo. Here 9g is the ground state of H and Ep, its energy.

4. Positive temperatures: Mathematical framework and results

A mathematical framework for treating quantum systems at positive densities is given
by a pair (A,«). Here A is a * algebra of observables and a : t — a4 is a group of
% automorphisms of A (evolution). A is usually chosen to be a von Neumann algebra.
(See [BR1, HHW].) In our case, A is generated by operators B @ e'?f) acting on Hoo =
HE, @ HE_, where B is a bounded operator on L?(R*") and ¢(f) = [¢(z)f(x)d®z with

f € L*(R?* R) , in the case phonons and similar operators for the case of photons; and
a(A) = et ge—tH? VAe A. (4.1)
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States of infinite systems are given by positive functionals, w’, on A, normalized as

w'(1) = 1. A state w, is said to be an equilibrium state if it is invariant under «, i.e.

BH

woa; = w. If a Hamiltonian H is s.t. the operator e ## is trace class, like in the case of a

particle system in a confining potential, then the Gibbs states
S(4) = (A7) |

given by the density matrices p = e‘ﬁﬁ/tr(e_ﬁﬁ), yield examples of equilibrium states.
Two key problems about infinite systems are
Problem #1. Find all equilibrium states for a given system;
Problem #2. Determine stability properties of these states.
In particular, one would like to show that all equilibrium states are the KMS - states

and that all KMS - states are stable in the sense that given a KMS state w we have
woa; = w as t = +o0 (4.2)

for any state w’ normal w.r to w. If the latter relation holds we say that a system in
question approaches the equilibrium (at the temperature determined by w).

Definitions of the KMS and normal states are given in Supplement I (see also Section
5, Eqn. (5.5)). Here we only mention that the KMS states for massless particles are
one-parameter families of states satisfying certain periodicity condition. The parameter in
question is called the temperature. Such states are usually constructed as limits of Gibbs
states of suitable approximations of a given system. Normal states associated with a given
state w are in some sense are local perturbations of w. In our case examples of normal

states associated with the KMS state w are
wf @w", (4.3)

where w? is any state (i.e., a density matrix) of the particle system and w” is the KMS
equilibrium state of the reservoir at the same temperature. From now on we fix a temper-
ature 7' > 0 and do not display it in the notation. One expectes that for a large class of

systems all equilibrium states are the KMS states.
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As T — 0,ie., 3 =1/T — oo,
W(A) = waolA) 1= (0, Ato) | (4.4)
where, recall, ¢y is the ground state of H. The normal w.r.t. w., states are given by
w,(A) == tr(Ap) (4.5)

for some positive trace-class operator p on Heo s.t. trp = 1. Thus definition (4.2) incor-
porates also the notion of convergence to equilibrium for zero temperature, 7' = 0.

Existence of equilibrium states is established in the following

Theorem 4.1. For |A| sufficiently small and for every temperature T > 0, there is a KMS
state, w, of the entire system at this temperature unique among normal states w.r. to
w© = WP @ w", where w? is the Gibbs state of the particle system and w” is the KMS

state of the reservoir at temperature T.

The existence proof, for any A, is given in Appendix I (see also Theorem 11.1). The
uniqueness statement follows from Theorem 11.1 and Corollary 16.4.

The main result of this paper is

Theorem 4.2. Under the assumptions given in Section 2, each of the two systems de-

scribed in Section 2 converges to equilibrium for any given temperature.

This theorem states in particular that starting at any state of the particle system
and an equilibrium state of the reservoir the state of the total system converges to the

equilibrium state at the temperature of the reservoir.

5. Reduction to a spectral problem

The goal of this section is to derive the property of approach to equilibrium from
spectral properties of a certain operator — the Liouville operator — giving an alternative
description of dynamics at positive temperatures. To this end we construct a Hilbert space,

‘H, a representation, 7, of A in the von Neumann algebra of bounded operators on ‘H and

self-adjoint operator L on H s.t. n(A) is dense in ‘H Vi € H and
m(ai(A)) = e ir(A)e™ (5.1)
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VA € A. Moreover, we construct conjugate representation, 7', of A on H s.t. w'(A)

commutes with 7(A):

[7'(A) , #(B)]=0 VA, Be A,

s.t. @' (A)¢ is dense in H Vi) € ‘H and s.t. for this representation we also have
7' (a(A)) = eiLtﬂ"(A)e_iLt VAec A. (5.2)

Once such a construction is given, the normal (w.r. to 7) states are those states which

are given by density matrices, i.e.,
W (A4) = trlpm(4)) (53)

for all A € A and some trace class, positive operator p on H s.t. trp =1
Finally, in what follows P, stands for an orthogonal projection onto » € Hg and

P,=1- P,

Using the standard spectral analysis we derive the following

Proposition 5.1. (i) If L has only one eigenvector, ), and this eigenvector corresponds
to the zero eigenvalue, then the system converges to equilibrium, in the sense of the ergodic

mean convergence:

1

lim /0 W' (ag(A))dt = w(A) (5.4)

for any A € A and any normal w.r. to 7 statew’. Here w(A) := (Q, n(A)Q), an equilibrium
state. (One also says that the system is ergodic.) (ii) If, moreover, the spectrum of L on

QL is absolutely continuous then the system has the convergence to equilibrium property.

Proof. Clearly it suffices to prove the proposition for normal states determined by
density matrices which are rank one projections (pure states). Since n'(A4)Q is dense in

‘H, it therefore suffices to prove the proposition for states of the form
w'(A) = (BQ, n(A)BQ)
= (Q,n(A)B* BQ) (5.5)
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where B € n/(A), s.t. || BQ|| = 1. For such states we have due to (5.1) and the relation
Lo =0,
W'(ai(A)) = (Q,m(A)e "' B*BQ) . (5.6)

By the condition in (i), L has only one simple eigenvalue at 0. In the case (ii), the rest of

its spectrum is, in addition, absolutely continuous. Hence

et s Py as t— oo (5.7)
in the sense of ergodic mean convergence in case (i) and the usual sense in case (ii). The
last two relations imply the statement of the proposition. a

Remark 5.2. It 1s clear from the proof above that one can estimate the rate of con-

vergence in (4.3) if one has information about smoothness of
(L —A— iO)_lﬁQ

in some average sense. Existence of derivatives in A of those boundary values would
imply a power law convergence in (4.3) while analyticity in a strip around R would yield
exponential bounds. We do not develop the corresponding abstract theory here but leave
these questions to other publications.

Our programme is to prove the approach to equilibrium constructing objects H, =,
7’ and L described above and by demonstrating spectral characteristics of the operator
L described in Proposition 5.1(ii). The construction of an operator L, which we call,
following [JP], the Liouville operator, is done in Section 6-11. The rest of the paper is
devoted to investigation of the spectral properties of L.

We begin with GNS constructions for the particle system and reservoir. The corre-
sponding objects are labeled by the supisinduces p and r, respectively.

A GNS construction associates with a von Neumann (Cx?) algebra A and a cyclic
separating state w on it yields a Hilbert space H, a representation, m, of A in the von

Neumann algebra of bounded operators on H and a cyclic vector £ in H s.t.

Q(A) = (Q, 7(A4)Q)
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and similarly for conjugate representation n’. The GNS constructions we use for the
particle system and reservior are explicit. Once this is done we construct the corresponding

objects for the total system by a perturbation theory.

6. Construction of H?, =P, QP and L?

Since the particle system has a finite number of degrees of freedom a construction of

a GNS representation for it is straightforward. The equilibrium states of the system are
given by the Gibbs states

wl(A) = tr(Ap?) , (6.1)

where p? := e PH [tr(e=FH) 3 = %, the Gibbs density matrix. A GNS Hilbert space can
be realized as the space of all Hilbert-Schmidt operators on HE_ with the cyclic vectors,
QP given by /pP. After a standard identification arising from |¢)(¢| <> ¢ @ C'¢p we arrive

at

HP = HP, @ HE, , QF = /pP(x,y) | (6.2)
(A= AR 12, xP(A) =12 @ CAC , (6.3)

where /pP(x,y) is the integral kernel of the squares root of the Gibbs density matrix
pP. Here C' is the anti-linear operator of complex conjugation. Moreover, the Liouvillian

operator is given by L? = n(H?) — n'(H?) which becomes
L?» =H’®1? — 1% ® H? . (6.4)

Clearly, we have LPQP = 0.

7. Construction of H", n", Q" and L”

Since the reservoir has an infinite number of degrees of freedom, an explicit construc-
tion of a GNS representation for it is more involved. It was given by H. Araki and J.
Woods [AW] and relies on the fact that the reservoir is given in terms of the free quantum

field. It goes as follows:

’Hr:?-[go@?-[go, \QT:\Ql@QQ, (71)
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7" (a(k)) = v/TF pas (k) + v/pa (k) . (7.2)
7" (a(k)) = /pai (k) + /T F pas(k) . (7.3)

where, recall, H’_ is a bosonic Fock space, Q; and a;(k) are the vacuum and annihilation

operators on the i-th factor in the product H.,, @ H._ , ¢ = 1,2, and
(k) = (9 — 1)1 | (7.4)

the Planck photon/phonon density.
In order to verify that the construction above indeed gives a GNS representation we

compute, using (6.1)—(6.3) that
(0w a® (k)" (a(0)2) = p(k)3(k — 0) (75)

Since the reservoir is described by a free field Hamiltonian, the correlation function w”

(a*(k)a(f)) determines entirely the state w”, i.e.,
w'(A) =(Q", 7" (A)Q") VAe A" .

We think about the representation (7.2)-(7.3) as a Bogolubov tranform. However,
@ and @ do not yield a Fock representation of the CCR: they do not have a vacuum in
F @ F. Thus this representation of the CCR is not equivalent to a tensor product of two

Fock representations.

Lemma 7.1. The Liouville operator L" for the reservoir acts on the space H" := H._ &

HL = F @ F according to the formula
L™ = /w(k)[ai‘(k)al(k) — a3(k)as (k)] Pk . (7.6)
Proof. Plug expressions (7.2)-(7.3) for n"(a(k)) and 7"’ (a(k)) into the formula

L= [l (@ ()a"(a(h) - 77" ()" (D)) (7.7)

which follows from the definition of L", to obtain (7.6). O
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8. Composition of subsystems

GNS constructions for the particle system and the reservoir yield a GNS construction

for the composite, not interacting system:

HO =P oH, QO =P g 0", (8.1)
70 =P " , 7O .= gPl g gt , (8.2)
LO =[P @1"+1P QL , (8.3)

where 17 and 1" are the identity operators on the spaces H? and H", respectively.

The operator L(®) can also be represented as
LO=H9g%1 -1,0H?, (8.4)

on H® = H. . @ Ho. Here 1 is the identity operators on Hso.

9. Perturbation

Now we use perturbation theory in order to pass from the GNS construction of the
uncoupled system to that of the coupled one, i.e., from group of automorphisms generated
by the Hamiltonian

HY =Hr 1" +12. @ H" (9.1)

to the one generated by the Hamiltonian
H=H% 4+v. (9.2)

Here both Hamiltonians are acting on HZ, @ HL_ and the perturbation v is given in (3.9)
or (3.10). We set
H=H, 7=x0 (9.3)

and

L=L9 47, (9.4)

where the uncoupled Lionvillian operator, L(®), is given by (8.3) with LP and L given in

(6.4) and (7.6), respectively, while the interaction, I, is given by
I:=n(v)—n'(v). (9.5)
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A straightforward way to view the operators 7# (v) is by using the integral representation,
(3.9) or (3.10), for v and the fact that the integrand is a sum of terms each of which is a
product of a bounded operator on HP and one of the operators, either a(k) or a*(k). We

write out the explicit form of the operator I in the phonon case:

I= /\/d3k{(gr 9 12)(\/1+ pa} @ 170 + \/pl, @ as)

— (12, 0 7,)(Vpar © 1 + /T4 pli, @ aj +hee.} (9.6)

x(k) —iz-k

where g, (k) = %6_
The domain of definition and self-adjointness of the operator L are tackled in the next

section.

10. Relative bounds and self-adjointness

The main result of this section is
Theorem 10.1. Under the conditions stated in Section 2, the operator L is self-adjoint.

This theorem follows from Proposition 10.2 below and the Nelson’s commutator the-
orem (see [GJ, RSIV]).

We begin with some notation. We introduce the auxillary estimating operator
A=1"® L, ., where L. = /w[a}‘al + ayaz]d’k . (10.1)
acting on H? @ H". Clearly, the operators L(®) and A commute, are self-adjoint and obey
D(L") D D(A) .

Proposition 10.2. The operators I and [I,A] are A - form bounded with the relative

form-bound < const - |A| - ([ w(t\;fl) )'/2 with the constant depending on the size, R, of the

particle box.

Proof. A proof of this proposition in the photon case is somewhat lengthy. It follows
from the similar statement for v and H®) (see [BFS2,4]). We omit it here. We present
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the proof only for the phonon case and only for the operator I. The proof for the operator
[I,A] identical. We write 7% for either 7 or «’. We decompose ¢(z) as

p(x) = 1(0) + dp(2) , (10.2)

where p1(2) = Y1 * p(x), with x1 € C§° supported in |k| <2 and =1 in |k| < 1, and the

second term is defined by this relation, to obtain

I=I+1", (10.3)
where
I' =17 (7 (51(0)) — (1 (0)) (10.4)
and
5 =P (x"(8p(x)) — b/ (x"(6p(x)) . (10.5)

Now we compute, using (7.2)-(7.3) and omitting the identity operators
" (¢1(0)) — 7" (21(0)) = a1 (f) + ai(f) — az(f) — a3(f) , (10.6)

where a;(f) = [ a;f, ai(f) = fa;ff and

X X1
= 14+p— . 10.7
Fi= (VTP v S (10.7
By the definition of p, Eqn (7.4), we have

6ﬂw/2—1X'X1

f:m N (10.8)
Hence,
o[ X
— < — (10.9)

and therefore I’ is A - form bounded with the form bound < const - |[A|( [ ﬁ)l/z, by

w

w<1
standard estimates (see [BFS24]).
In order to estimate I we use the mean value theorem to represent
dp(x) = - Voi(y) + X * p(2) (10.10)
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where Y; := 1 — x1, for some point y on the line segment joining 0 and . The coupling

function for the field Vo, (y) is M\T}}le’yk By Eqns (7.2)-(7.3), the coupling functions for

7% (Vi(y)) are

g X X1 k. g X X1 ke
F,:=+/14+ pk=—=¢ Y and H,:= 1kE—=¢ v, 10.11

w 2w

and similarly for Y, * p(z). They clearly satisfy

E,|? H,|?
@ < x? and Ay < 2. (10.12)
w w<2 w w<2

Hence n?# (.’L"ﬂ'r# (chl)(y)) are A-form bounded with the relative bound < const( [ x*+

w<2
N2 (e BFS2]). Similarly, #?# (z"# (y, * o(x are A-form bounded with the
w1 1 *¢
relative bound < const( / 5_2)1/2‘ This completes the proof. a

w>1

11. Basic properties of L

In this section we establish key properties of the Liouville operator L mentioned in

Section 5. The main result of this section is the following

Theorem 11.1. Let oy be defined in (4.1). The operator L has the following properties
(i) eta#(A)e™H = a#(ai(A));

) for each (3, there is a vector Q = Qg € H s.t. LQ = 0;

(i) the functional w(A) := (Q, 7(A)Q) is a KMS state for «;

) Q=00 0.

Proof. (1) We consider only the representation w. To begin with, a simple computation

gives

eiLOtﬂ'(a(k))e_iLot = e_i“’tﬂ'(a(k))
= ﬂ'(e_i‘”ta(k)) .
These relations imply that

elotn(A)emibot = g (Mot ge=iHot) | (11.1)

Next, by the definition, I := n(v) — @’(v), and the fact that the representations 7 and
7' commute, we have

e”tﬂ'(A)e_”t = ﬂ'(ei“’Ae_i”t) ) (11.2)
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The last two relations and the Trotter product formula

e — 5 lim (e_iLOt/"e_It/")" (11.3)

n— o0

imply (i) for 7% = .

(ii)—(iv) There are two ways to prove the statements — one way through the finite
volume approximation and thermodynamic limit and the other by a perturbation theory.
The first proof is worked out in Appendix I while the second proof is based on an explicit

construction of {2 given in

Proposition 11.2. The vector % is in the domain of the operator e 1> for any 3 € R

and the vector

Q= e P 2QO) || AIA2Q)| | (11.4)

where Ly = Lo+ 7(v), has all the properties mentioned in statements (ii)— (iii) of Theorem

11.1. Moreover, in the formula above the operator Ly can be replaced by
L,:=Lo—n'(v). (11.5)
A proof of this proposition is given also in Appendix 1. a

12. Spectral deformation

In this section we apply the method of spectral deformation to the operator L in order
to untangle various branches of its continuous spectrum. To keep things explicit we use

the simplest realization of this method by means the dilatation group. Namely, we define
U(f) = Uso(0) @ Uso(—0) (12.1)

on H =He @ Hoo, where
Us(0) =12 2 U"(0) (12.2)
on Hoo = HL, @ HL, with U"(6) being the lifting of the dilation group
Up: f(k) = e= fle k), (12.3)
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f € L*(R?), from the one photon/phonon space to the Fock space H%, (e.g.

9) : H a3 (f;)Qs0 H (Us ;)02

The twist of taking the dilation parameters, in the two factors in (12.1), of opposite signs

is crucial.

Note that, the cyclic vector Q = Qg is not invariant under U(6) : U(0)Q # Q for

6 0.

Now we define on the form domain of A
Ly :=U(8)LU(6)~!
and similarly for L(°) and I. Thus we have
Ly=LY + 1, .

We compute
W =1rg1r+17 gL},
where
b= /w[e_eai‘al —elalas)dPk .
Moreover we have in the phonon case (6 is real)

B -
Ip = Xe™* mxg{(e—” "ok 912 )(/1+ psat @ 17, + /pal’. @ az)

— (12, @ e IR (ppar @15 + /T + ol @ af) + e}

where yg(k) = x(e~?k) and py(k) = p(e~%k), and similarly in the photon case.
The family Lgo) is analytic in the strip {6 € C‘ 0] < 5}
Due to the twist in the definition of U"(6) we have the following formula

Li,=cosp-L" —isinp- L,

aux ?

where, recall, L] . is given in (10.1).
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Eqns (7.2)-(7.4) and (12.8) show that the coupling functions for the operator I are

of the form
SR (12.10)
Ve’ B 1
where the function f(e=%k) is analytic in 6 in the strip
{6 € C|[Tmé| < g} : (12.11)

—6
while, for every fixed 6, [Imf| < 7, &C% is exponentially decaying in |k| on the scale

K uniformly in 3.

On the other hand, if [Imf| < 7, then the denominator in (12.10) has only one zero
in k: at £ = 0. This zero produces an additional infrared singularity \/%, which we dealt
with in Section 10. Using Eqn (12.9) and the estimates of that section but applied to the

operator Lg = Lgo) + Iy, we arive at

Theorem 12.1. Let x4(k) := x(e™’k). For [Imf| < I and for || sufficiently small, (i) Ly

are defined as closed operators with the form domain Ds(Lg) D D¢(A), (ii) Iy is A-form

bounded with the relative bound < const|A|( [ wl('iefl))l/z Sin&me), (iii) Lgu is an analytic

in 6, Im6| < T, for any u € D(A).
We cannot prove that the family Ly is analytic of type A, but the following partial

result suffices for us.

Theorem 12.2. (i) If 0 < £Imf < 7, then {z € C| £ Imz > 1} C p(Ly);
(ii) The family Ly is analytic of type A (in the sense of Kato) in the strips {9 € C‘O <
I < § |;
(iii) For any uw and v which are U(6)-analytic in a strip {9 € (C| Imé| < 51} for some
3 =01 >0,

(u, (L —2z) ") = (ug,(Lg — 2) " wp) (12.12)
for Imz > 1 and 0 < Im#f < 6,/2 .

Proof. (1) Consider only the + case and let z be s.t. Imz > K. Without a loss of

generality we can assume that § = 1p. Then ¢ > 0. By the Schwarz inequality

[ull - [[(Lip — 2)ull 2 =Im(Lip — 2)u
(12.13)
= (singp- L, —Iml;, +Imz), ,

aux
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Proceeding as in the proof of Proposition 10.2 we obtain

Im/;, <singp(eL,

aux

+ N (12.14)
for any ¢ > 0. Take ¢ = % The last three estimates and the inequality Imz > 1 give

[ell - [(Lip = 2)ull = 4{A + 1)u , (12.15)

1

where v = 5 sin ¢. The last estimate implies that

I(Lio = 2)ull = Al[ull

provided Imz > 1. Similarly, we show that |[(L_;, — Z)u|| > ~|u| under the same

*

10, the last two statements imply that z € p(Liy).

conditions. Since L_;, = L

(i) In fact, estimate (12.15) implies more: for v = %sin(Im@)
I(Zo — 2)ul = A A" ?u]| . (12.16)
The last estimate can be rewritten as
IAV2 (Lo —2) 7 <47 (12.17)

Now, using conditions on V() and proceeding similarly as in the proof of Proposition
10.2, we obtain
|AY28, LA~ < C . (12.18)

The last two estimates and the computation
69(L9 — Z)_l = —(L9 — Z)_lang(Lg — Z)_l

imply that (Ls — 2)~" is analytic in 8 € S¥*, provided +Imz is sufficiently large. Here
S*:={6€C|0 < +Imf < T}.
(i) Now to fix ideas we assume that Imé > 0 and Imz > 0. Let v and v be U(6)-

analytic for [Imé| < é; for some ¥ > é; > 0. Then in a standard way

(u, (Lo — 2) "' 0) = (u_is, (Loyis — 2) " 0is) (12.19)
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for 0 < s < §; and for 8 as above. The r.h.s. of this equation is analytic in 6 as long as
6 +is € ST and Imz >> 1. In particular, this shows that (u, (Ls — z)"'v) has an analytic
continuation on a dense set of u’s and v’s into the strip {9 e C|— %1 < Imé < g}, provided
Imz > 1.

It remains to identify the analytic continuation, fg(u,v), of (u,(Ly — z)"'v) con-
structed above with (u,(Lg — z)~'v) for § € R. To this end using the definition of f, we

find
fo(u,(Lg — 2)w) = (u—;s,(Lotis — 2) " (Logis — 2)wis)

= (U—is, wis) = (u,w)

If Ly — z is invertible, then we have
fo(u,v) = (u,(Ly — z)""v) .

For 6 € R and Imz > 0, Lg — z 1s invertible and therefore this equality holds. On the other
hand we know that fa(u,v) = (ug,(Le+e — z)"lvg) for any 6’ with Im6#’ > 0. The last
two relations with 6 = 0 yield (12.12). O

Finally, using perturbative expressions developed in the proof of Propositionn 11.2 we

demonstrate in Appendix I the following

Theorem 12.3. The eigenvector ) described in Proposition 11.2 (see Eqn. (11.4)) is
dilatation analytic in the strip {6 € C||[Imf| < T} and consequently Qg := U(6)S2 is a zero

eigenvector of the operator L.

13. Spectrum of Lgo)

In this section we determine the spectrum of the unperturbed but rotated Liouville
operator Lgo).

It is easy to determine the spectrum of Lj:

opp(Ly) = {0} , (13.1)
Oess(LY) = e IR 4 oImI+mR+ (13.2)
see Fig. 13.1 below.
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o(L?) . Imf >0

. EV
essential
spectrum Im 8
=
Fig. 13.1
Since the spectrum of H? is purely discrete,
o(H") = 04(H?) = {E;}5° , (13.3)
we have that
o(LY) =04(H?) — 0q(H?) ={E; — Ejli,j =0,...}. (13.4)
Using this, we obtain
o (L)) = 04(H?) — 04(H?) (13.5)
Oess (L)) = (04(H?) — 0a(H?)) + (e 7IMORF 4 (I Im0+mRT) (13.6)

see Fig. 13.2 below.

o(LY), Imf > 0
EV s= qj HP)- g (HP)

NN\

/W essential
W spectrum

Fig. 13.2

Remark 13.1 If we consider y not just as an ultraviolet cut-off but as an adjustable

coupling function and if we set y to be of a certain form in the infrared region, namely

x(k) = [klxi(%]*) (13.6)
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where y1(s?), is analytic in s in the strip {z € (C‘ Imz| < 2/9_7(:}’ for some 0 < %—O < 27”,

as well as dilation analytic, then one can use a complex shift transformation, besides the

dilation one, to achieve the picture for the spectrum of L"(6) given in Fig. 13.3 (cf. [JP
1-3]).

a(L7(6)) . Tmé >0

EV

Im6

Fig. 13.3

This option would simplify slightly our approach.

In the remainder of this paper we develop perturbation theory for the operator L.
The goal of this theory is to give a sufficiently detailed description of spectral characteristics
of the operator Ly which will imply the main results of this paper — Theorems 4.1 and 4.2.
The problem here is that the eigenvalues of Lfgo), Imé > 0 (which are also the eigenvalues
of L(O)) which are of the main interest for us, are not isolated; they lie on top of thresholds
(= branch points) of its continuous spectrum. To deal with this problem we adapt and use
the decimation map - or, more generally, the renormalization group - techniques developed

in [BFS1-4]. This is done in the next three sections.

14. The decimation map

In this section we recall the definition and main properties of the decimation map
introduced in [BFS1] and developed in [BFS2].

Let projection operators P and P on a separable Banach space X form a partition of
unity in the sense that P+ P = 1. Denote by Cp the set of all closed operators, H, on X

whose domain have dense intersections with RanP and RanP and which satisfy
|5 < oo, (14.1)

24



||PHR?|| < oo and ||R?HP|| < 00 . (14.2)

Here Hp = PHP [ RanP, etc. and Rz = FH%lﬁ. We define the map

by

Dp : Cp — (Closed operators on Ran P) (14.3)

Dp(H) = P(H — HR5H)P [Ranp - (14.4)

We call Dp the decimation map.

and

To describe properties of the map Dp we need the following
Definition 14.1.
Given two closed operators, H and H’, on Banach spaces X and X' we say that H
and H' are isospectral at 0 iff
(a) 0eo(H) < 0€co(H
(b) there are maps P : D(H) — D(H'), Q : D(H') — D(H), Q¥ : X — X', and
P#: X' — X s.t.
Null@ NNullH' = {0} and NullP NNullH = {0} (14.5)

and
HQ=P#H' and Q¥H=H'P. (14.6)
Given two families, H(z), z € @y, and H(z), z € Q2, of closed operators on Banach
spaces X and X' we say that H(z) and H'(z) are isospectral in Q@ C Q4 N Qy iff H(z)
and H'(z) are isospectral for each z € Q.

Observe that property (ib) implies that

Hy=0= H'¢' =0 with o' =Py £0

HY' =0=Hy =0 with ¢ =0Qu¢ £0.

The latter relations imply, in particular, that

but

UP(H) = UP(H/) 5

also relate generalized eigenfunctions and the corresponding spectrum if those can be

identified for one of the operators H or H'.

Furthermore we have
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Proposition 14.2. Assume (14.1) and (14.2) hold. Then Property (ib) of Definition 14.1
implies that 0 € o(H) = 0 € o(H') (the part of Property (ia) crucial for us), and we have
always that NullP N NullH = {0}.

Proof. Let 0 € p(H'). Then we can solve the equation H'P = Q¥ H for P to obtain
P=HT'Q"H . (14.7)

On the other hand the definition Hy = PH, P implies

P=HJ'PHP-P
_ (14.8)
— H-'(PH - PHP) .
P
Substituting expression (14.7) for P into the r.h.s., we find

P=HJ'(P-PHPH''Q")H .
Adding this to (14.7) yields
1= |H;'P - HZ'PHPH'™'Q* + H'Q* | H

Since by our conditions H%lﬁHP is bounded, the expression in the square brackets rep-
resents a bounded operator. Hence H has a bounded inverse. So 0 € p(H).
The second statement follows from Eqn (14.8) and the relation P + P=1. O

The main result of this section is the following

Theorem 14.3. The operators H and Dp(H) are isospectral at 0, provided (14.1)—(14.2)

hold, i.e., H is in the domain of the map Dp.

Proof. Clearly, to identify our situation with Definition 14.1 we take X’ = RanP and
H' = Dp(H). We also let P be the corresponding operator entering (ib) of Definition 14.1

and define three other operators entering (ib) as P# = P,

Q=Q(H):=P - P(Hp) 'PHP (14.9)
and
Q* =Q#(H) =P - PHP(H5)'P (14.10)
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In our case Q¥ (H) = Q(H*)*, but we do not use this property.

The second relation in (14.4) is shown in Proposition 14.2, while the first one follows
from the inequality |QPy|| > |Py| — ||[RHPyp|| and the property P? = P and (14.7).
Now we prove relations (14.5). Using the definition of Q(H), we transform

HQ=HP — HFH;HP

= PHP+ PHP - PHPH_'PHP

—~ PHPH'PHP
= PHP - PHPH;'PHP = P-Dp(H) .
Next, we have
Q"H = PH — PHFH;FH

= PHP+ PHP - PHPH_'PHP — PHPH_'HP
—= PHP - PHPH_'PHP = Dp(H)P .

Finally, we demonstrate property (a) of Definition 14.1. Denote H' = Dp(H). Propo-
sition 14.2 implies that 0 € p(H) if 0 € p(H').

Now let, conversely, 0 € p(H) and show that 0 € p(H'). This statement follows from

the relation
H™'=PH'P (14.11)
which we set out to prove now. We have by the definition
H'PH'P=PHPH ' - PH?H%lﬁHPH_lP
=P -PHPH'P-PHPH_;'PH(1-P)H'P
=P.
Similarly one shows that PH!PH' = P. Hence H' has the bounded inverse PH ! P.
Thus we have shown that 0 € p(H) < 0 € p(Dp(H)), which is equivalent to 0 €
o(H) < 0€ o(Dp(H)). O
We call Dp(H) the decimation (or Feshbach) map: it maps operators on X into

operators on Ran P in such a way that H — 2 -1 and Dp(H — z) are isospectral at 0 on

the set p(Hp).
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15. Elimination of particle and high photon/phonon energy degrees of
freedom

In this section we deal with the first application of the decimation map and as a result
we face some of the typical problems that arise. We pick an eigenvalue ¢ = E; — E; of Lgo)
(which is an eigenvalue of L?) and from now on we consider this fixed eigenvalue only. An

important role in our analysis is played by the auxiliary Liouville operator

Ll..= /w(ai‘al + ajasy) , (15.1)
introduced in Section 10, Eqn (10.1), to handle the problem of self-adjointness. With this

operator we associate a partition of unity
XLy <p T XL5 >0 =17, (15.2)

where ya<, and x>, are the characteristic functions of the intervals (—oc, p] and (p, o),
respectively.
Let P!, denote the projection onto the eigenspace of the operator LY, Imé > 0, corre-

sponding to an eigenvalue ¢’ and Fg, =1 — P!,. We define the partition of unity

P,+P,=1, (15.3)
where
Pp = Pf ® XLz, <p (15-4)
and
Py =Pl @x1y,20+ P (15.5)

Finally with definition (14.4) in mind, we let
DY) :=Dp, . (15.6)

Let e_ and ¢4 be the eigenvalues of LP immediately on the left and on the right of ¢,

respectively. Define the domain (see Fig. 15.1)

2 2 1
Sep= {z €Cle - §(5 —e_)<Rez<e+ §(€+ —¢),Imz > —§p} . (15.7)

Fig. 15.1. Domain S. ,.

The main result of this section is
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Proposition 15.1. Let 5 > Imf > 4, for some 0 < § < 3 and \/p > || (depending on
d). Then the operators Ly — z -1, z € S. ,, are in the domain of definition of D(p?g.

Proof. For simplicity we conduct the proof only for particle systems with finite number
of states and for phonons. In the general case the proof of bound (15.9) is more involved.
As before, § = ip € C* is fixed. Let Ly := Lgo)ﬁp + Fplgﬁp. We want to show that
Ly— z-1is invertible on RanP, as long as z € S ,. First, we prove that Lfgo) is invertible
on RanP,. One can reduce the problem at hand as follows. Write the eigenprojection ﬁg

as

P.= Y PL. (15.8)
e'€o(LP)

el #e

Due to this formula and expression (15.5) for P, it suffices to show that

17 ® (Ly — =z + €') is invertible on Ran(ng, ®1")
for ¢’ # ¢ and

17 @ (Ly — z + ¢) is invertible on Ran(P? @ xrr >,) .

T

T ux 18 normal and both statements follow readily from

The operator Ly = cos pL" —isinpL
an examination of its spectrum on an appropriate subspace. Thus the operators Lgo) —z-1
are invertible of RanP,. With this in mind we use the notation (Lgo) —z- 1)_1/2 on RanP,
in an informal but clearly understandable way.

The same analysis as above shows moreover that

Veingp + Imz||(L — 2)7V2P || + fsinp|[AV2(LY) — 2)72P, < C . (15.9)

Now we remember that 7 > ¢ > § and therefore sinp > sind. We absorb sind into

the constants below and do not display it. We transform
Lo—z-1=(LY - "2+ m)LlP — )17 (15.10)

where M = (Lgo) - z)_l/zﬁplgﬁp(l)(eo) — z)7'/2. Following the proof of Proposition 10.2
(A-form boundedness of I) one shows that the operator M is well defined and, in the
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phonon case, satisfies the estimate

< ( %)/ . (15.11)

Thus picking |A|/,/p sufficiently small we can achieve that | M| < 1. Hence Ly — z - 1 is

1
-

invertible on RanP,. Moreover, due to (15.9), we have the estimate

const

IPo(Lo—2)"'P, < (15.12)

p+Imz '

Similar estimates as above (see also [BFS] for a detailed analysis of the zero temper-

ature case) show also that

||Pp[9ﬁp(z9 - Z)_lﬁpH + ”ﬁp(ZH - Z)_lﬁpthH

< const (/ %) % | (15.13)

This completes the proof of Proposition 15.1. g
The above proposition allows us to pass isospectrally from Ly — 2 -1, 2 € 5., 0 <
)

Imf < 7, to DE,?E(LQ —z-1). The spectrum of the latter operator on the invariant subspace

RanP, determines the spectrum of Ly, 0 < Imé < 7, in the set S. ,.

16. Instability of eigenvalues and the Fermi Golden Rule

In this section we derive an important consequence of Proposition 15.1 - the instability

of the eigenvalues of Lgo), 5 > Im6 > 0, under the perturbation Iy. Our main result is the
following
Theorem 16.1. There is a number v > 0 independent of A, 3 and 6 s.t. for |\| sufficiently
small, the operator Ly, % > Imf > 0, has no spectrum in the domain

{z € C‘Imz > AWK, (16.1)

but a simple eigenvalue at 0. Here the domain K is given by (see Fig. 16.1)

K={z¢ C—_‘|Rez| < —Imz tan ¢ + C(—Imz)*/?} (16.2)
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for some constant C'.

Fig. 16.1. Domain K.

Proof. In this proof §, 0 < Imf < 7, is fixed, and sometimes is not displayed. We also
fix £ € o(LP) and consider two cases (a) € # 0 and (b) ¢ = 0, separately.
Take p = [A|*/? in the photon case and p = 1 in the phonon case. Due to Proposition

14.1 and the remark after its proof it suffices to examine the spectrum of the operator

L.(z):=DP)(Ly —2) , (16.3)

p.e
acting on the subspace RanP,, for z € 5. ,. Using the definition of D(p?g, see Equns (13.4)

and (14.6), we write it as

Lz) =LY +W-—z-1, (16.4)
where
W = P,(Iy — IyR(z,0)I4) P, (16.5)
with
R(z,0) = P,(P,LyP,—2)"'P, . (16.6)

Estimates of [BFS2], in the phonon case, and of [BFS4], in the photon case, can be

easily adapted to the present situation to yield that
W =(A.®17)P,+ O\/?) | (16.7)

where A. is a rank PP x rank PP matrix (or a bounded operator in the case of rank PP = oo
as for ¢ = 0). A key fact about A. is that I'. := —ImA. is non-negative definite and is
given by
T. := 22 P.IP.8(I'"" — &)P.IP. | RanP. , (16.8)
where P, = PP @ Pj., P, 1s the rank-one projection onto Q" := Q; Qs € H", P.=1-P.
and f(o) = LOP_. We consider I, as an operator on RanP? (~ RanP.).
Remark 16.2. A. 1s the matrix of the second order perturbation theory for the imagi-

nary parts of resonances of L branching out the eigenvalue ¢ of L(®) under the perturbation
I (expression (16.8) is referred to his literature as the Fermi Golden Rule (see [RSIV])).

A crucial property of the operator Ag is proven in the following
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Theorem 16.3. QP is a zero eigenvector of the operator Ag : AgQ2P = 0.

Proof. First we observe that
Lgo) =1"®@ Ly, = O(p) = O(/\4/3) on RanP, .

Next, since 0y is a zero eigenvector of the operator Ly (see Theorem 12.3), we have by
Proposition 14.1 that the vector
px = P,y

is a zero eigenvector of the operator Ly(0). By Theorem 11.1 and the relation U(8)Q(®) =
Q9 we have that

3

er = Q0 + 00\ .

Hence due to Eqns (16.4) and (16.7),
0=Lo(0)px = (Ao ® 17)Q© + O(\7/3) .

Since the operator Ag is of the order A%, we have (Ag ® lr)Q(O) = 0 and consequently
AP = 0. d

Since P is a real vector (CQP = QF), it is also a zero eigenvector for ReAy and
ImAy = —T'g, separately.

Next, we concentrate on the operator I'. We have

Proposition 16.4.
(i) T'. is non-negative, I'. > 0, and real, CT. =T.C;
(ii)) T. >0 if e #0;
(iii) T'c has a simple eigenvalue at 0 with the eigenvector QP € RanP? if ¢ = 0;
(iv) i%fiIalf’yg > 0, where v. = inf{o(T'.)\{0}}.

This proposition is proven in Appendix II. (Note that statement (i) follows directly
from the definition of I'. and a simple computation.)

Eqns (16.4) and (16.7) imply that the operator L.(z) is of the form

L(z)=A.®1"+17@ Ly + O(A"/*) on RanP, . (16.9)
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P
h(iS ln ‘h(f ha].f SpaC(i
{Z c (C||mz < _’y€—|—()(/\ / )} .

Take o := #’y and v = c)\? = %’y, where v = min~.. Then for |A| sufficiently small, Ly
has no spectrum in the strip S. ,, provided ¢ # 0.

(b) € = 0. The problem here is that I'. has a zero eigenvalue. To see how this effects the
spectrum of L.(z) consider the sum of the first two terms on the r.h.s. of (16.9), i.e. ignore
for the moment the remainder O(A\7/?). Besides of the spectrum coming from non-zero
eigenvalues of A, and the spectrum of Lj, similar to the spectrum in the case ¢ # 0, this

sum has the spectrum 0+ o(L}) = o(L}) coming from the zero eigenvalue of A.—q (see

Fig. 16.2).

Fig. 16.2. Spectrum of A ® 1" 4+ 17 @ L} for ¢ = 0.

This part touches the real axis at the point z = 0. Thus, because of the remain-
der O(A7/?) we can control the spectrum of the operator L.(z) only outside an O(X7/?)-
neighbourhood of the point z = 0 - the spectral point of our interest. To get at the point
z = 0 we have to perform a renormalization group analysis on L.(z) in the spirit of [BFS

2,3]. This analysis is based on the family of projection operators P, and yields
Theorem 16.5. Let the conditions of Section 2 hold. Then for all 6, 0 < Imf < 7,

() the part of the spectrum of Ly in S. , lies in the set K,
(3) 0 is a simple eigenvalue of Lg.
A proof of this theorem is sketched in Appendix III.

Combining the results for ¢ # 0 and ¢ = 0 obtained above and using that

U Sep= {z € C‘Imz > —%p}
e€oa(LP)

and that p = %7, we arrive at the statement of the Theorem 16.1. O

Corollary 16.6. Under the conditions of Section 2, the spectrum of L - Py is absolutely

continuous and consequently the statements of Theorems 4.1 and 4.2 are true.
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Proof. Let ¢ and ¢ be U(#)-analytic vector in the strip {9 € (C‘ Imé| < g} and let
g = U(0)Y and gy = U(0)p. By Theorem 12.2 we have that

(o, (L = 2)719) = (o5, (Lo — 2) " tg) (16.10)

for 0 < Im# < 7 and Imz > K, where K is given in that theorem. Now fix 6 with
0 < Imf# < 7. Then Theorem 16.1 implies that the r.h.s. of (16.10) is analytic in z in
domain (16.1) with a simple pole at z = 0. Since for a given strip U(#)-analytic vectors

form a dense set in H, the result follows. O

Appendix I. Existence of the KMS states (incomplete)

In this appendix we present two proofs of statements (ii) and (iii) of Theorem 11.1.
The first proof follows a standard general argument (see e.g. [BRII, Sections 6.2.2 and
6.3.4]). We just sketch it here. Let A be a box in R®. With this box we associate, in a

standard way, the Fock space H”.

o0

A= Fa and the Hamiltonian Hx on Heo o 1= H}o’o@?{go’j\
(see e.g. [GJ,H, BR II]). Then the operator e 4 is trace class for 3 > 0, so that we can
define the Gibbs state

wa(A) = tr(Apa) ,

where py = e P14 [tre=FHa for all observables “localized” in Ag C A (see [H]). Now, the

states wy are uniformly bounded:
feonl < brpn =1

Hence by the Alaoglu theorem the set {wj} is weak*-compact, i.e., there is a sequence

{wa'}, A = R?, and a state w on A s.t.
(.UA/(A) — W(A) VAc A

as A’ — R®. A standard argument (see [BRII, Proposition 5.3.25]) shows that w is a KMS
state at the temperature % Note that we did not require |A| to be small.
Next, using the Araki-Woods representations my and «y of the local C* algebras Ay

(for the box A) by bounded operators on Hp := Hoo o @ Hoo,a (see supplement I) we
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construct cyclic vectors 25, and Liouville operators Ly s.t.
wa(A) = (Qa, ma (A)Q0)

VA e Ay, and
LAQA =0.

(Observe that, as it is shown in Supplement I, in the finite volume case
Ly =maA(Hp) — 7y (Ha) -

This representation does not survive the infinite volume limit since n(H) and 7'(H) are
not defined separately in the infinite volume case.)

Next, one can show that as A 1 R?,
Qr — Qe D(L)

and

(La —2)"' = (L—2)""%

for any ¢ € Hy and any A’ (one can embed Hpar C Ha C H for A' C A). The last two

relations imply

LO=0. U

Now we proceed to the second proof of the existence of KMS states for our systems.
The key argument here — the Dyson expansion - is also a standard one (see [BRII, Theorem
5.4.4]). However, the case treated in the literature is that of bounded perturbations, while
the perturbations in our case are only relatively bounded. To accomodate this complication
requires some extra work.

Observe that the state constructed below (see Proposition 11.2) is a thermodynamic
limit of finite-volume states discussed above.

Proof of Proposition 11.2. We introduce the operator I';5 := e #l2eflo and show
that for any 3, the cyclic vector Q(©), defined in (8.1), is in the domain of I';3 and that

T35 — @) < oA,

35



uniformly, in 3. On the other hand, since L(®Q(®) = 0, we have FiﬂQ(O) = e~ ALA/2Q(0) =
Q-||e=B8L22QO)| as in Proposition 11.2. After that an abstract argument (see [BRII, Proof
of Theorem 5.4.4] implies that w(A) := (2, 7(A)Q2), where 7 is given in (9.3), is a KMS
state for the total system at the temperature T' = %. This is exactly the state constructed
at the beginning of this appendix.

Our analysis of I';3 relies of the following Dyson formula:

o0

r=0

where T(®) = 1 and, with I’ := =(v)

3

™ — / d"stis, (I)...Tis, (1) ,
Ap

with Ag ={0 <s, <...<s; <f}and 7,5(4) = e~5Lo geslo,
The appendiz is not finished.

Appendix II. The operator I'. (Fermi Golden Rule)

In this appendix we prove Proposition 16.4 of Section 16 concerning the operator
I'. defined in Eqn (16.8). We do this only in the phonon case. In the photon case the
computations are similar but lengthier. In what follows we use the following notation:

E; denote the eigenvalues of H? and Py the corresponding eigenprojections so that PP =

Y. P, ® P;. Moreover, we set Eyy = E — E; and P,=1-— P,
E;—FE;=¢
For simplicity we assume the following non-degeneracy conditions:

(a) E;,—E;=FEy—Ej onlyifi=1 and j=j'
and
(b) the eigenvalues E;’s of H? are simple.
Proof of Proposition 16.4. Statement (i) follows from the definition of I'. and a simple
computation.

Next, let Pi]; = (P; ® P;) and write I'. as
Fa — F(jiag + F(gﬁ—diag

3
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where

rdee — (PLT.PY|Eyj =)

and

rof-dias — (PPT.PY|(ij) # (i'j') and Eij = Euj =¢) .

& 13

By the non-degeneracy conditions, (a) and (b), above T'4188 has positive matrix elements

and

roffi=diag — if =+£0.

These two properties imply (ii).
To prove (iii) we use that as a computation below (see Eqn (I1.9)) shows the matrix

Fgﬁ_diag has strictly negative entries. Hence for a sufficiently large a, (Tg + a)™! =

>0 . .

(I + a)_1 [F”(F' + a)_l]n, where TV = Fglag and T' = Fgﬁ_dlag are the diagonal and
n=0

off-diagonal parts of Ty respectively, is positivity improving (a vector is positive iff all its
entries are positive). Since I'oQP = 0 and since QP € RanPJ can be identified with the

vector

QP — (e—ﬁEO/27 e—ﬁE1/27 )

whose entries are positive, it follows by the Perron-Frobenius argument that 0 is the lowest
and nondegenerate eigenvalue of I'y.
Statement (iv) is proven by a direct computation. a

In the next statement, the operator I'. is computed explicitly.

Proposition II.1. In the phonon case, the operator I'. defined in Eqn (16.8) has the

following representation

L. = Z /{Pl[grﬁZJ(Hp _Ei‘l'w)gr(l ‘|‘P)+QI5(HP —Ei—w)grp]Pi(X)Pj
E;—FE;=¢

+P; @ Pj[9.Pj8(H — Ej +w)7, (1 + p) + G,0(H" — Ej — w)gup)] Pj}

) Z / {P@IPH ® Pjg. Pjid(w — Ejir)

E;—E;=¢
Ei/_EjIZE
(i))#3'5")
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restricted to RanP?. Here, recall, g,(k) = X\/(Tk_ie_ikr'

Proof. In the phonon case the operator I entering I'. is given in (9.6). We rewrite it

here as

I=n"(ar(v/1+ pga)) + 7 (a3(V/pg.))
—7"(a3(v/pg.)) — 7" (a2(y/1 + pga)) + h.c.

where 7P and #?’ are defined in (6.3). Substituting this expression into Eqn (12.8) and

using that a; annihilate €2;, j = 1,2, we obtain

P. = P2( [+ (@ (V1 + pgs) + 7 (a2(V77,))
= 71 (V7)) = 7 (@ (V1 + pga)|S(L) — <)
x [a7(a (v/1+ pga) + 7" (a3 (V7))

7} (V7)) ~ 7 (a3 (VI T pgs))]) o PE (1.2

restricted to RanP?.
Now we pull the a;’s to the right, till they either contract with a}’s or hit the vacuum

2. To pull them through §(L® — ¢) we use the following pull-through formulae
ay 2 (k)§(L©® — &) = §(L© + w(k) — £)ay o (k) , (I1.3)
which is derived in a standard way using Eqn (7.6) (see [BFS2]). As a result we obtain

L= P2 [{a7@ )3 + o - ()1 + )

— 7P(G,)0(LY +w — )7 (g, )/ (1 + p)p

= 7(g)3(L7 +w — &) () (T + p)p |

+ 7 (g2)8(LF +w — &) (7,)p

— 77, )8(L" —w —e)nP (g )/ (L + p)p

+ (7, )0(LP — w — ) (g)(1 + p) (I.4)



restricted to RanP?. Now using that LP = H? @ 12_ — 12 @ H?, that

PP= Y PQP,

&

E;—FE;=¢
and that 7?(A) = A® 1 and n?(A) =1 @ CAC, on H? = HE_ @ H?
L= Z / Pig,0(H? +w — Ei)g. Pi @ Pjdi,indj5 (1 + p)
E;—FE;=¢
E— E/ e
— Pg, Py @ Pjgs Py d(w — Eiin)\/(1 4+ p)p

(
+ Pige6(H? —w — E;)g,Pi @ Pjé; 1,05 jip
— Pigo Pir ® Pjg,Pjid(w + Eiir)\/(1+ p)p
— Pig, Py @ PjgoPjé(w + Eiir)\/(1 + p)p}
+ P @ Pjg,0(—H" + w+ E;)g:P;jdii0, 855 p
— Pig. Py @ Pjg, Py 6(w — Eis)7/(1 4 p)p
+ P @ Pjgrd(—HP —w+ Ej)g, Pjdivdj 0 (1+p)
restricted to Ran(P?). Finally, using that
d(H? + w— E;)P; = §(w)P;
and similarly for §(H? + w — E;), that
Pie™™™ P, @ Pje”"** P;§(w) = P; @ P;é(w)
and similarly for the other terms in (II.5), and finally that
[ +20) -2/ ol = 0.

we arrive at (IL.1).

we obtain

(IL5)

(IL.6)

(IL.7)

(IL8)

O

Assuming for simplicity that all the eigenvalues E; of H? are simple we write out I'.

more explicitly as a (possibly, infinite) matrix:

I, = (/ {310 9000 [8(w = Bie)(1 + p) + 8(w + Eue)p]

03

+ 3 e g00)|*[8( — Bje)(1+ p) + 8w + Ese)p] }oii, 85,5

1#]

— 2/ [<¢i,§r¢i/><¢j,gx¢y>5(w — Ejjr) 4 (¥i, goin (5, G050 )6 (w + En')]

V(L + p)oip2an
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where the ¢y’s are the eigenfunctions of HP corresponding to the eigenvalues E, and (i, j)

and (i’, j') run through pairs satisfying E; — E; = ¢ and E; — Ejy = ¢. Here we have used

that F;; = E;;; and assumed without loss of generality that the eigenfunctions ;’s are

real.
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