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Abstract: In this paper we study the energy spectrum of the Pauli-Fierz Hamiltonian
generating the dynamics of nonrelativistic electrons bound to static nuclei and interacting
with the quantized radiation field. We show that, for sufficiently small values of the
elementary electric charge, and under weaker conditions than those required in [3],
the spectrum of this Hamiltonian is absolutely continuous, except possibly in small
neighbourhoods of the ground state energy and the ionization thresholds. In particular, it
is shown that (for a large range of energies) there are no stable excited eigenstates. The
method used to prove these results relies on the positivity of the commutator between
the Hamiltonian and a suitably modified dilatation generator on photon Fock space.

1. Introduction

In this paper we extend the method of positive commutators to a family of Hamiltonians
related to the Pauli—Fierz Hamiltonian describing nonrelativistic electrons bound to static
nuclei and interacting with the quantized electromagnetic field, subject to an ultraviolet
cut-off. This is a standard Hamiltonian of quantum electrodynamics of nonrelativistic
particles. Lett andm be the electron charge and mass ang-= ﬁ—i the fine-structure
constant. The physical value of is approximatelyliy, however, in this paper it is
considered as a small dimensionless parameter. In dimensionless units in which the
energy, photon wave vector, particle coordinate, particle charge and particle mass are
measured in units afhc? 2, %*;, mlezz e. 32K/~1 andm, respectively (her& is

an ultraviolet cut-off defined below), the Pauli-Fierz Hamiltonian for a systeid of
charged particles (typically electrons) is given by

N 2
1
H.e/ = Z—<pj —ejA.xj/) +V X/ ® 1f + lpan ® Hs; (1.2)
i 2m;j
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wheree := .eq;:::;en/, € is the electric chargan; the massy; the position (-
operator), angpj := —iVj the momentum operator of thgh particle, forj =
1;:::;N; moreoverx := .X1;::: ; Xxn/. The operatoK 12A.y/ is the quantized elec-

tromagnetic vector potential, cut-off at large wave vectors, at the gointphysical
spaceR3. It is assumed to satisfy the Coulomb gauge condit(@n; A).y/ = 0.The
operatorV .x/ originates in a properly rescaled electrostatic (scalar) potential of the
charged particles (electrons) in the Coulomb field of static charges (nuclei) (see [2]).
Finally, Hf is the usual Hamiltonian of the noninteracting, quantized electromagnetic
field. The operatoré\.y/, y € R3, andHs are densely defined, self-adjoint operators
on the usual Fock spacklf, of the quantized electromagnetic field (the photon Fock
space), and¥ .x/ is a multiplication operator on the particle Hilbert spaeigar, which
is given by (a subspace of prescribed symmetry charactdrof3V/, with R3N the
configuration space of the charged particles. The Hilbert space of the entire system con-
sisting of the charged particles and an arbitrary number of photons is given by the tensor
product spacédpat ® He. One can prove without much difficulty (see, e.g., [8,9]) that
H .e/ is a densely defined, self-adjoint operatortdgnt ® He, whose energy spectrum
is bounded below by a finite constant (depending on the positions of the nuclei and their
electric charges). A proof can be based, either on diamagnetic type inequalities or on
constructing the semigroup e@eptH .e/), fort > 0, with the help of path-integrals.
It should be noted that, for simplicity, we have set the magnetic moments of the
charged particles to zero. (Otherwise, the Hamiltomias/ would contain an additional
term describing the Zeeman energies of magnetic moments in the ultraviolet cut-off,
quantized electromagnetic field. This term would complicate our analysis slightly.)
Forle| := Zszl lej | sufficiently small, we shall construct a suitable modification of

the (29-quantized) generator of dilatations on the photon Fock space, with the property
that its commutator with the Hamiltoniadth.e/ is positive, provided that we restrict the
energy to small neighbourhoods of the eigenvalues of the particle Hamiltonian,

N

1
Hpart = Zﬁpjzﬁ-V-X/; (1.2)
j=1

corresponding to excited states of the atom or molecule. This result has the follow-
ing implications: In the vicinity of the eigenvalues B4t corresponding to excited
eigenstates,

(i) H.e/ has no eigenvalues;
(ii) the spectrum oH .e/ is purely absolutely continuous;
(iif) H.e/ satisfies thdéimiting absorption principle

Implication (i) is derived from the basic positive-commutator estimate via a virial
theorem, while (ii) and (iii) follow from that estimate with the help of a slight extension of
Kato—Mourre theory presented in this paper. The limiting absorption principle represents
a first step towards analyzing properties of the time evolution of a quantum mechanical
system.

The results announced in the abstract follow from (i) and (ii) above, together with
similar (but simpler) results in Sect. IV of [3]. Results similar to (i) and (ii) above (but of
somewhat more detailed nature), were first obtained, ustdemgerhypotheses, in [2—

4]; (see remarks after Theorem 3.1). If the quantized electromagnetic field is not only cut
off in the ultraviolet, but also in the infrared (at small wave vectors), e.g., by introducing
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a small photon mass, results similar to ours have previously been established in [22, 10,
12,11]. Furthermore, in [12], commutator estimates were derived that inspired, in part,

our findings. Parallel results for sufficiently high temperatures (here the temperature

leads to an effective infrared cut-off) were obtained in [15,16].

Commutator methods were introduced in [24,18], further developed in [19] and
turned into a deep theory in [20]. In [20,21,23,26] they were shown to yield a powerful
tool in analyzing spectral properties of Hamiltonians of quantum-mechanical systems
and in studying their time evolution. The present paper is inspired by these earlier
discoveries and should be viewed as a step towards understanding the time evolution of
systems of photons interacting with nonrelativistic, quantum-mechanical matter.

2. The Hamiltonian of Nonrelativistic QED

As announced, we study systems of nonrelativistic, quantum-mechanical, charged parti-
cles interacting with the quantized electromagnetic field. The dynamics of such systems
is described by the Hamiltoniad .e/ introduced in (1.1). The potential eneryy.x/

is assumed to satisfy standard Kato-type conditions specified below. The Hamiltonian
Hs of the noninteracting, quantized electromagnetic field can be expressed in terms of
standard photon creation- and annihilation operatirs/ anda.k/, as follows:

He = /!.k/a*.k/-a.k/d?’k; 2.1)

where! = 1 .k/ = [k| is the energy of a photon with wave vectarThe creation-
and annihilation operatoes‘.k/ anda.k/ are transverse, vector-valued, operator-valued
distributions orHs satisfyingk - a*.k/ = k - a.k/ = 0 anda.k/ =0, forallk € RS,
where is thevacuum(zero-photonyectorin H¢ . Furthermore, these operators satisfy
the canonical commutation relations

kik!
[af ki af k] =00 [aik/saik/] = (4§ - “'(_é) k=K (2.2)

wherea? is thei'" component o&” (in the plane perpendicular 9, anda” = a ora*.

The cut-off electromagnetic vector potentialy/, y € R3, is the densely defined
self-adjoint operator oll¢ given by

. : K/
Ayl = /(e—'ky ®a*k/ + e @ a.k/)—d3k; (2.3)
JTK

where isareal function ofR® of rapid decrease, #lsf — oo. Itdescribes the ultraviolet
cut-off and is necessary fér.y/ to be densely defined and self-adjoint, for every R3.
We assume it lives on a scalg, i.e., it is of the form .k/ = K—12 §.k=K/, where
o is a fixed function. The particular form of is irrelevant for our analysis. All that is
required are certain bounds ogpand its derivatives.
Itis convenient to forget the origin of the vector potenfial// and consider a slighty
generalized form of it given by

Ayl = f(Gy.k/@)a*.k/ + Gy.k/®a.k/>d3k; (2.4)
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where the functiorGy .k/ is assumed to satisfy a variety of conditions (depending on
the problem we study), the most important one being

1
su —G.k/2d3k} < oo 25
wp| [ 5 16 k! x @5

This condition guarantees that, fef small enough, the operatbi.e/ is bounded below
and self-adjoint on the domain bf.e = 0/ (see [5]).
We recall that we neglect the Zeeman term,

—Z i Si - B.xi/; (2.6)

describing the interaction energy of the magnetic moments, whereS; is the spin
operator of thé™ particle, with the magnetic fielB.y/ = curl A.y/.

In order to simplify notation and exposition, we demonstrate our approach on the
model of a particle system interacting with a massless scalar field, instead of the vector
potential. The Hamiltonian for such a model is given by

H = Hpan® 1f + 1pan ® Hf +9gl; (2.7)

acting onHpart ® F, where the Hilbert spacklpart is the same as befor&; is the
Fock space of scalar fields generated ByR3/, Hpartis given in (1.2) and is a particle
(atomic) Hamiltonian, acting oklpart, andHs is a scalar field Hamiltonian df given,
similarly to (2.1), by

He = / 1 .k/a*.k/a.k/ d3k; (2.8)
with I = I k/ = |k|, as above. Finally, the interaction telnis defined by

| = /(Gx.k/®a*.k/ + Gx.k/®a.k/)d3k
= a*.Gy/ +a.Gy/; (2.9)

wherex = .x1;::: ;xn/ € RN, and wherésy . k/ is required to satisfy (2.5) (we use the
same notation for coupling functions as in the vector case). The opesétk/saanda.k/

are creation- and annihilation operators of a scalar quantum field actirgTimey obey

the canonical commutation relationa®.k/; a#.k’/] = 0, [a.k/;a*.k'/] = .k — K/,
anda.k/ = 0, for allk;k’ € R3, where is the vacuum vector if. (For brevity

we continue to refer to the scalar field pisoton field) Note that for a scalar field the
coupling to matter cannot be “minimal”, i.e., it cannot be described by replacing the
momentum operator by a covariant derivative.

The simplified model contains all the difficulties of the vector model, but the infrared
problem becomes visible in its pure form, unencumbered by vector notation and other
inessential particulars. In (2.9), it is straightforward to also include terms quadratic in
a anda*. We do not pursue this in order not to muddle the key ideas underlying our
methods.
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Throughout the paper, we assume that
Hpart = Hffart on the domain ofilﬁpjz and has several isolated eigenvalues,
Eo; E1;:::, of finite multiplicity beli);v the botton®, of its essential spectrum:
Eo<Ei1<.--<86:

This assumption is satisfied for a large class of potentials including many-body
Coulomb potentials (see e.g. [25]).

The HamiltonianH .e/ defined in (1.1) is self-adjoint under the above assumption
on the potentiaV/ .x/ and under assumption (2.5) on the coupling functBn This is
proven by using diamagnetic-type inequalities or by considering the semigrbufft.

It was shown in [3] that folle| = ) |ej| sufficiently small, it is self-adjoint on the
domainD(H.e/) = D(H.0/). The self-adjointness of the Hamiltoni&h, defined in
(2.7)-(2.9), on the domai®.H/ = D.Hg/, for g sufficiently small, follows from a
result of [3] (see Eq. (4.10) of Sect. 4).

In what follows,E 1 .H/ stands for the spectral projection of a self-adjoint operator
H associated with an intervdl, while < , for the characteristic function of a set

(thusE1.H/ = He1). Below, we make use of the following exponential decay

estimate proven in [3]: If € C§°, with supp C( 00;6 — g supf 'GX| ) then

le X' \H/|<C ; (2.10)
for sufficientlysmall( <6 —supsupp —¢ supf 'GX ) Since the operatotds
and[H; x] areH -bounded, Eq. (2.10) implies that

16OM @ .He +1/ .H/|| < oo for anyM > 0: (2.11)

3. Results

First we formulate the restrictions on the coupling functi@s= Gx.k/ used in this
paper:

2
|Gx k/| M ‘.k~Vk/GX.k/ 3 .
and
2
supix) ™™ Zf (14 V.k/ Y| k- V"G k/|Pd%k < o0 (3.2)
X
n=

for someM > 0.
In order to simplify somewhat the technical part of the paper we assume that

supk)?(x) ™.k - Vi/"Gy .k/| < 00 ; (3.3)
X;k
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wherek =k - |k| %, for someM > 0 and forn = 0; 1, and that

1=2
Gx|? N
g. /:=sup / | |X| <C ¥2 (3.4)
X IS =
LetE' and ;.!;er s = 1;:::; mj, be the eigenvalues and corresponding eigenfunc-
tions of Hpar, Wherei = 0;1;:::, andE? < E! < :::. Fori;j > 0, we assume

that [, _y-Aij/*AijdSy is continuous in! and vanishes at = 0. HereAj; are the
mi x m;j matrices with the entrieg( }a Gx par)» in the case of the Hamiltonian

N : . R
H,and( jas > 22PaGx, parnds PX=p —.p-k/k, withk = & (the projection

par

a=1
of p onto the planek*, perpendicular tk), in the case of the HamiltoniaH .e/.
Here® = 1;:::;mj andr = 1;:::;mj, anddSy is the area element on the sphere

{k e R3| |k| = 1}. Forj > 1 (i.e., for excited statesggn), we define the self-adjoint
matrix Oj by

0 = Yy f.Aij/*Ai,- A —Bl/d3; (3.5)
i:Ei<EIl
whereEl! = EJ — E!. The eigenvalues of this matrix are the resonance widths to

second order in the coupling constant, associated with the eigerizhjughat is known
in quantum mechanics as Fermi’'s Golden Rule. We assume that

j = liminf. 20;/ > 0; (3.6)

| |—=0

where = g in the case of the Hamiltoniad and|e| = max|ej|, in the case of the
I

HamiltonianH .e/.
The main result of this paper is the following theorem.

Theorem 3.1.Assume (3.1)—(3.4) and (3.6). et> 1. Then for|e| sufficiently small,
the spectrum dfl .e/ in any interval containind=!, but not containing any other part of
the spectrum oflpart, and whose distance 8pedpart N .—oo; E3/is > |e|, is purely
absolutely continuous. Moreover, in such an intertéle/ has the local decay property
(formulated below). A similar statement, but wiigh replaced byg, holds forH.

The first statement of the theorem was proved in [2—4] under additional assumptions

2
of analyticity of Gy and [ sup!Sx- < oo for some > 0, which is a stronger condition
Py

in the infrared regionk — 0, than the one we require in this paper.
Next, we formulate the local decay property mentioned in Theorem 3.1. To this end,
we introduce the anti-self-adjoint operator

1
“A = Lo ® E/a*.k/(kvk—i—vk-k)a.k/d?’k: (3.7)
This operator is a second quantization of the generator of dilatations in the one-photon

momentum space, i.e., é‘f.k - Vk 4+ Vk - k/. In what follows, whenever no danger of
confusion arises, we omit the trivial factdigan® and®1¢ . We say thatl has thdocal
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decay propertyn a spectral intervall (with respect to an operatey), if the following
estimate holds

00 . 2
[ Jwm e Pascn (3.8)
—00

forany > 1=2 and any € Ran nH<1. (In fact, a slightly stronger property, the
limiting absorption principle with Holder constant<  — % holds in our case.)

Theorem 3.1 follows from a positive commutator estimate derived below (Theo-
rem 5.2) and from the Kato—Mourre theory mentioned in the introduction and expounded
upon in Sect. 5. We prove only the part of Theorem 3.1 concerning the opkfraldre
corresponding part for the operatdr.e/, given in (1.1), is proven in exactly the same

2
way, using some simple additional estimates related to the quadrat@p%fA.xj /?

of the perturbationd .e/ — H.0/.

We note that absolute continuity of the spectrum and the local decay property outside
of 0.g%/- (resp.O.|e|/-) neighbourhoods of the eigenvalues and thresholdsgf;
has been proven in [3].

Remark 3.2The requirement thag is small is not completely sa_tisfactory, since if
we, remembering the origin @y in (2.3), takeGy.k/ = —*Le= kX and k/ =

JTK
K~12 ( k=K/, then

o [ |k VkGx.k/|?
1. k/
forlargeK . However, the operatgx ) ~M=2k-Vy in conditions (3.1)—(3.2) on the coupling

functionGy.k/ can be replaced by the operakoVi — X - V. This is done by replacing
in our analysis the key operatéy, given in (3.7), by the operator

(X) d% = 0.K% (3.9)

1
A = Lan® 3 / a* .k/.k - Vi + Vi - k/a.k/dk

1
—[E.x-vx+vx-x/®1f]: (3.10)

Given standard additional conditions ¥nx/ (see e.g. [6, 13]), most of the analysis
given below goes without a change. The advantage of the modified conditi@bs isn
in the fact that they do not require the ultraviolet cut-ffto be small in the case of

interest:Gy.k/ = ﬁe*ik'x with .k/ = K2 o.k=K/. Indeed, in this case, e.g.
|k Vi —x- vX/csx.|</|2OI
Si’p/ 1K/

%k =0.1/ (3.11)

k/

e ¥, weassume

instead of (3.9). Moreover, if, abstracting propertie&gtk/ =
thatGy satisfies

1
K- Vi — X - Vy /"Gy .k/|?
Zsup/lk (=X WLk g o (3.12)
2.5 1k

instead of (3.1), and a corresponding relation replacing (3.2), then the analysis presented
in Sect. 5 below simplifies considerably (see also Remark 5.7).

In what follows weabsorb the parametey into the coupling functioGy .k/.
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4. Relative Bounds on the Interaction

In this section we collect some elementary bounds needed for the proof of Theorem 3.1.
In what follows, byH¢ 2 we always understartd = ,whereP is the projection
onto the orthogonal complement of the vacuum stata Fock space.

Lemma 4.1 Relative bounds

12\ _
e

(4.1)

Fock

and

IFI2 2 |2 .
mwwmsUT—szm+/Wnﬁm (4.2)

Proof. We drop the subindex “Fock” in the proof. By Schwarz’ inequality we have

laf/ || < /|f.k/| lak/ || < (/ qu (/!.k/ la.k/ ||2>1:2; 4.3)

Thanks to

f!.k/ la.k/ 1> = ( ;Hf ); (4.4)
this implies (4.1). Inequality (4.2) follows from
a.f/a*.f/ = a*.f/a.f/ + (F; )1, (4.5)
( ;a*.fla.f/ )= |a.f/ ||?and (4.1). O

We rewrite bound (4.1) as

Ha.f/ Hy 52

PR e
.~ (/ g) _ : 4.7)

These two bounds are equivalent, since the expressions under the norm signs are adjoint
to each other. Moreover, (4.1) implies that

IA

HFock

HH;1=2 a*.f/

. FI2\2 )1
@t f/tafl) <2 /— HE2 s (4.8)
which yields

1 [|F?
i(a*_f/+a.f/> < Hf + —/4; (4.9)
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forany > 0. Furthermore, inequalities (4.1) and (4.2) imply

| (2 fr+afr) | < </|f|2>1:2|| ”+2</ |f|2> Wi [ @ao)

Equation (4.9) implies thak is Hf form-bounded with relative bound zero, provided
(2.5) holds, while Eq. (4.10) implies thatis H; >-bounded with relative bound

G 2\ 1=2
5 Sur( |Gx| ) :
X 1

provided (2.5) holds. The latter of these two statements implies that, if (2.5) is satisfied,
thenH is self-adjoint on the domain df¢.
To develop more refined bounds we need the Pull-through formulae (see [2,3])

a.k/g.Hs/ = g.Hy + 1 k//a.k/ (4.11)

and
g.Hge/a*.k/ = a*.k/g.Hf + V1 .k//; (4.12)

valid for any piecewise continuous and bounded functoriThese formulae follow
from the following commutation relation

a.k/Hg = .Hf + Y .k//a.k/ (4.13)
and its adjoint.)
Nowif = pe< ,then
la.k/ llFock = Il He+1.k/< @K/ llFock
< rw< la.k/ |Fock: (4.14)

Using this in (4.3) we obtain instead of (4.1) (or (4.6))

1=2
T2 -
[ IFKIRK b= oo = ( / %) v, (4.15)

1<

These estimates can be extended to products of several annihilation or creation operators.
Namely, relation (4.11) and a property of characteristic functions imply that

m

(Ha.kj/) He< =] [ (@Ki/ he< ) : (4.16)
1

1
Applying estimate (4.15) to each factor on the r.h.s., we find

1=2
m m 2
/]_[® If,-lll(]:[a.kj/) Hr < 5]:[(/ 1 ) m=2. (4.17)

I<

and similarly for certain operators:

1=2
m m 12
/]_[® 151l e < (l:[a.kj/)n 5]1[(] 'f’T') m=2. (4.18)
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5. Positive Commutators

In this section we formulate our key technical result. In the following, when we speak
of a commutator of two, in general unbounded, operatdrandA, we understand that
D.H/ND.A/isdense, anfH; A] is defined firstas aform db.H/ N D.A/ and then
extended to a bounded or unbounded operator.

We fixj > 1 once and for all. LePpart = Pdan be the orthogonal projection onto the

eigenspace dfipart corresponding to the eigenval@d . For a fixed energy scale we
define the projection operator

P = Ppant ® He< (5.1)
andP = 1 — P. We define a family of operators
Ay = A + PVP —PV*P; (5.2)
whereA is the second quantized dilatation generator defined in (3.7), and
V= Ria; R =RP; (5.3)

for positive constants and" to be chosen below, where

Re = [.Ho _Eif2 ¢ "2]_1=2: (5.4)

Note that"R? — .Ho — EJ/, as" — 0. We note also thaAy depends on four
parametersy,”, and .

Lemma 5.1.The commutatofH ; Ay ] can be defined as a quadratic form on the dense
setD.Ho/ ND.A/ and can be extended from there to{a)M ® Hs /-bounded operator.

Moreover, for any e Cg° withsupp C (— 00; 6 —sup/ @) the operator
X

.H/[H; Ay ] is bounded. (5.5)

Proof. The first statement of the lemma follows from the relatibngd / = D.Hg/ and
D.Ay/ = D.A/. The second of these two relations is due to the fact that the operator
Ay — Ais bounded.

To prove the second statement we observe that, by a direct compugafton,e R,
mapsD.H/ = D.Hg/ into itself and therefore, in a sense of quadratic forms,

A @ :
[H1A]—@— =0H ; (5.6)

whereH = e~ AHe A. A direct computation (see Eq. (5.18) below) and Lemma 4.1
show that the r.h.s. of this equality is &)™ ® H¢/-bounded operator. Hengkl ; A]
extends to a(x)M ® H¢/-bounded operator. Furthermore, due to definition (5.1)—(5.4),
Av — A'is a bounded operator mappikt= Hpat® F into D.H/, so[H; Ay — Alis

well defined. As can be easily shown, it is a bounded operator. HéhcAy | extends

to a. (x)M @ H¢/-bounded operator. Finally, the third statement follows from the second
one and estimate (2.11)a
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Observe that it is not hard to show that the opergitbrAy | is self-adjoint. Hence
taking adjoints in (5.5) one concludes that also the operator

[H;Ay] .H/is bounded. (5.7)

Let 1 be an energy interval containifig but no other parts of the spectrumteyfayt,
and let

L= inf1 - sup{ Hpard/ N .—o0; inf 1/} > 0 (5.8)

i.e., the distance,;, of inf 1 to the part of the spectrum éfpa below 1 is assumed
to be positive. The key technical result of this paper is

Theorem 5.2.Assume that Conditions (3.1)-(3.4) and (3.6) hold, and let, for simplicity,
the parameters, ,and in (5.1)-(5.4) satisfy the inequalitigs< < jand" <
If yj is the smallest eigenvalue 0f and

=0 (" he v 2y [t 22y 22 gy to. 1
then
2- 1y
E1.H/[H;AVIE1.H/ > =< Y g e (5.9)

(Hereo.1/ — 0, as" — 0, andOj is the matrix introduced in (3.5).)

This theorem is proven in Sect. 7.
Sinceg <« 1, we can pick the parametets and in (5.1)—(5.4) satisfying the

inequalities
" . n 2 2.
[— <"« ; L =<1 (5.10)
1

g« ¥ 2 (5.11)

and

Then the parameter in (5.9) is much smaller than 1 and therefore the r.h.s. is strictly
positive on RarE4 .H/. In what follows we assume that conditions (5.10)—(5.11) are
satisfied.

Before proceeding any further we derive the most important consequence of this
theorem — the instability of the eigenvalié.

Theorem 5.3 Yirial theoren). Let the conditions of Theorem 5.2 be satisfied. I§ an
2

eigenfunction of the operatéd with an eigenvalu& < 6 — sup/ 'G+' then isin

X

the domain ofH; Ay ] and
( s[H;Av] )=0: (5.12)

Consequently, inview of Theorem 32has no eigenvalues in any intervhlcontaining
only one eigenvalue ¢fipart and satisfying 1 > g2 with 1 defined in (5.8).
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Proof. Letgy € C3°.R/, be real, be supported (n— o0; Y —sup/ w) and satisfy
b 1

01.E/=1.Theng;.H/ = ,so,asshown atthe end of this proof, (5.12) is equivalent
to the relation

( :lg.H/AVD )=0; (5.13)
whereg. / := . — E/g1. /. Noteg.H/ = 0. Since we do not know whether

€ D.Ay/, we must understand the commutator on the I.h.s. of (5.13) as an operator
resulting once the commutation is performed. Now we claim that

[A;g.H/]is bounded (5.14)

Indeed, leg € C3° be s.tgg = g and supg C (— 00; 6 —sup/ %).The proof
X
of (5.14) will follow from the following formula

[A:g.H/1 = fdg.z/.z —H/YA;HIg.H/.z—H/

+/d§.z/.z —H/Yg.H/[A;H].z—H/; (5.15)

understood in the sense of quadratic forms»rA/. Here we use the notation and
definitions of Appendix B of [14]. Indeed, the |.h.s. is defined as a quadratic form on
D.A/ by { ;[A;9.H/] ) =2Reg.H/ ;A ), while the r.h.s. represents a bounded
operator by virtue of (5.5) and (5.7) with = 0 and estimates (B.6) of [14] ahandg.

Thus it suffices to prove the representation above. To this end we use the formula

0| —of ;e~ Ag.H/e ™ ) =0 —o( ;e” Ag.H/e Ag.H/ )

+0 | —o( ;g.H/e” Ag.H/e A ): (5.16)

It suffices to consider one of the terms on the r.h.s., say the first one. We use the Helffer—
Sj6strand formula

g.H/= /dg.z/.z —H/?

(see [14]) to obtain

@] —o ;e” Ag.H/e Ag.H/ )=@ | =o/dg.z/( c.z—H /gH )
(5.17)

where, recallH =e~ AHe A and is given by an explicit formula
H =Hpan® 1f + lpar®e™ Hf + 1

with | = a*.Gy. /+a.Gy. /,Gy. .k/ = e~ ZGy.e~ k/.
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It is not difficult to see that the operator function— H /~1§.H/ is differentiable
in at =0:dueto (5.7) withy =0,

1 1
“lz-H/t—z-H/YgH/ =2—H /TY2H —H/GH/z—H/?

— .z—H/YH;Alg.H/.z—H/?
as — 0, in the operator norm. Taking this into account and taking tukerivative
under the sign of integral in (5.17) we arrive at

@ | —o( ;e “g.H/e Ag.H/ )=/dg.z/( c.z—H/ YA HIg.H/.z—H/Y )

The last equation together with a similar equation for the second term in (5.16) yields
(5.15). As was already mentioned Eq. (5.15) together with Eqgs. (5.5) and (5V7 00
yields (5.14).

Equation (5.14) implies tha®\y ; g.H/] is also bounded.

In order to write the I.h.s. of (5.13) as a quadratic form, which is what we ultimately
need for the proof, we proceed in a standard way by approximating it as follows

( s[9-H/AV] >:"¢To( [9-HGAVT )
where =R ,R = . 4+ A/l (Notethat — as — o0.) Since
e D.A/ = D.Ay/ we can write
( ;[9-H/;AV] )=2Re{g.H/ Ay )

Sinceg.H/ =0and[g.H/;R 1= . +A/YA;g.H/]. +A/1(in asense of
guadratic forms), we have

g.H/ =R I[A;g.H/. +A/ :
Hence, dueto (5.14)R || <1and|. +A/1 | <2|| |, we have

1
lg.H/ Il < =iAgHAJ| |

Consequently,
( ilg-HLAVY ) — 0

as — 0o, so (5.13) follows.
Finally, we show the equivalence of (5.12) and (5.13). Define the family of functions
:=g1.H/ . +A/~1 .Then,asabove, — as — oo.Moreover, since, due

to (5.14),01.-H/ mapsD.A/ into itself, we conclude that € D.A/. Hence

( JIHIAL ) = lim ¢ C[HAL )
=2 IlmImH ;A )=2IlmIm({g.H/ ;A )

— 00

= ILmOO< 9. HLAT ) =( ;[9.H/A] ).

Thus{ ;[H;A] )={( ;[g.H/;A] ) and therefore (5.12) holdso
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To deduce the statements of Theorem 3.1, about absolute continuity and local decay,
from Theorem 5.2, we use an abstract Kato—Mourre theory. A standard variant of this
theory (see, e.g., [1, 6, 13, 20, 23]) requiresoundedness of the commutatphs ; H]

and[Av [Av;H ]]. In our case, these commutators arelebounded for two reasons.

First, under Condition (3.1)A; H]and[A; [A;H ]] areH -bounded only foM = 0,

whereM is the exponent appearing in (3.1). This follows from the straightforward
computation (justified in the proof of Lemma 5.5 below)

ady.H/ =Hf +a*(.k- Vi + g/”GX) +a(.k-Vk+ g/”Gx); (5.18)
where we used the standard notatiop ad/ = [H; A] (see, however, Remarks 3.2 and
5.7).

The second reason is that the second part of the opekatdsee Egs. (5.2)—(5.4))
contains the projectionpys < , entering in the definition oP, and this operator, not
being differentiable itH¢, has a very singular commutator with the dilatation generator
A (or any other operator not commuting witfy ).

To remedy the first problem, we weaken the conditions used in Mourre theory (see
Lemmata 5.5 and 5.6 below).

We go around the second problem by repladggby a smooth version, as follows. In
definition (5.2)—(5.4) of the operatéty, , we replace the projectidd by the projection
Ps, where

Ps = Ppat® Hs<s (5.19)

Thus, we just vary the photon energy scale a little. Denote the resulting oper#grby
Let be anon-negative function supported in the intef¥aP] and satisfying’ = 1.
Define

AR :=/ s/ Ay ds: (5.20)

The next two lemmas establish the desired propertie‘qﬂﬂ.

Lemma 5.4. Theorem 5.2 holds if we replace, by A2

Proof. Inequalities (5.10)—(5.11) still hold true if we replacédy s with1l <s < 2.
Hence (5.9) holds aftef\y is replaced byAy:s, for 1 < s < 2. Since > 0 and

/=1, thisimplies (5.9) wittAy replaced b)A\'/a"/_ 0
Lemmab5.5.Let < Cg® andsupp C <_ 00;6 — sup[ @) Where 6 —
” !

inf  cont-Hpart/- Then the operatorBA\',aV/; H] .H/and [Ava"/; [A;,a"/; H1] .H/are
bounded.

Proof. The boundedness of the first commutator follows from Lemma 5.1 (see also the
sentence after Eqg. (5.23)). To show the boundedness of the second commutator we write

A\',a"/ = A+ Q, where
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We consider first the operatér and make sense of the formal computation (5.18).
The casen = 1 was justified in the proof of Lemma 5.1. So we consider the pase?.
Due to (5.14),

H/: D.A/ > D.A/; (5.22)

Hence, due to (5.7), the commutatEjH;A];A] is defined as a quadratic form on
.H/D.A/. The fact thae #, € R, preserve®.H/ = D.Ho/ and a simple compu-
tation shows that
d2

gz H= [[H; AL AJ;

0
where, recallH :=e~ AHe A, inasense of quadratic forms. The I.h.s. of this equality

can be evaluated explicitly: it is exactly the r.h.s. of (5.18). Applying Eq. (4.10), with
fo=x) "Mk v+ %/”Gx, to (5.18) and observing that Condition (3.1) guarantees

that sug.||f || + | ¥ ~¥2F ||/ is finite, we conclude that the operator@all /(x)~M are
Hf-bounded fon = 1; 2. Hence, due to Eq. (2.10),
adi.H/ .H/ are bounded fon = 1; 2. (5.23)

(Again,Q is a bounded operator, and Egs. (5.2)—(5.4) show that so are the operators

H-QandQ - H. Hence[A\',a"/; H] .H/is bounded as was also shown above.)
Now we write

[1H: AZ 1 A ] = [1H: AL A+ [IH: AL Q]
+[[H ; QI3 A] + [[H; Ql; Q]: (5.24)

By Eq. (5.23) and sinc® and[H; Q] are bounded, the first two terms and the last term
on the r.h.s. of (5.24), multiplied by.H/ on both sides, are bounded.

It remains to show tha[t[H ; QL A], the third term on ther.h.s. of (5.24), timesH /,
is bounded. To this end, we want to use the Jacobi identity and rewrite this term as

[[QiHI:A] = [IArQIiH] + [Q: 1A HI| (5.25)
To demonstrate this identity we prove it first fBrreplaced by the bounded operator
A :=A.i .i + A/ !andthen take the limit — oo for the quadratic forms. Now

we demonstrate thaf\ ; Q] andH - [A; Q] are bounded. We write

|

where
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whereR-. = e AR-e~ A, etc., and where we have used thatHre™ A = e He.
Therefore

e APse” A = Py :

Next, using Leibnitz’ rule, we rewrite this relation as

S=/ s/ P5[A;R?]Ps 1 Psds +f s/ PsR?[A;1]Ps ds

+/ .s/%(ﬁse RZ1 Py, )ds

Since[A; Ho] and[A; 11(x)~™ areHg¢-bounded, the first two terms on the r.h.s. are
bounded. The last term on the r.h.s. can be rewritten as

d — d.s .s// —
—fs .s/E(PSRles)ds - fTPSR.?lpsds;

which shows that it is bounded, as well. Thus we proved[haQ)] is bounded. Using
the above analysis and Eqs. (4.1) and (4.2), one showklitH#; Q] is bounded as well.
Consequently[[A; Q]; H] is bounded. Next, sinceA; H] is .(x)M ® H¢/-bounded
andQ.Hs + i/ is bounded, remembering Eq. (2.10) and commutixig™ through
Q, if necessary, we conclude th&®; [A; H]] is bounded. Thus by identity (5.25), the
boundedness (:[[Q; HI; A] follows, which completes the proof of the lemma

=0

In the next lemma, we slightly weaken the hypotheses of Mourre theory (see, e.g.,
[1,6,13,20,23]), in order to accommodate our situation (see Lemma 5.5).

Lemma 5.6.LetH andiA be two self-adjoint operators, defined on the same Hilbert
space, and lefl € 1’ cC R be intervals such that for any real € C3°.1'/, the
operatorgH; Al and [[H JA]; A], defined originally as quadratic forms on the domains
D.H/NnD.A/and .H/D.A/, extend to unbounded operators satisfying

[H;A] .H/and .H/[[H;A];A] .H/are bounded, (5.26)
H/[H;A] .H/> .H/? forsome > 0. (5.27)

Thenthe spectrum éf in 1 is absolutely continuous ardl has the local decay property
in 1 with respect to the operatak.

The proof of this lemma follows, by now standard, arguments of [20,23,6]. For the
reader’s convenience it is given in Appendix A. (For a different proof see [15].)

Proof of Theorem 3.1By Lemma 5.4, we have a positive commutator estimate as in
(5.9), but WithA\'/aV/ replacingAy ,

2

Ex.H/[H; AR 1E1.H/ > +/ij1.H/2; (5.28)

and by Lemma 5.5, we know that, for any e C3° with supp C ( —00;6 —

supf @) the operator{sA\',a"/; H] .H/ and[A\',aV/; [A;,a"/; H1] .H/are bounded.
X



Positive Commutators and Spectrum of Pauli—Fierz Hamiltonian 573

Thus Lemma 5.6 implies that the spectruntbfn 1 is absolutely continuous and that
the local decay property holds W.rA\',aV/. To pass to the local decay property w.r.t.
the operator, it suffices to observe that, due to (4.1Q),is a bounded operator and
therefore(A)~ - (A\',a"/> <const,for >0. O

Remark 5.7The arguments presented above can be simplified if we use, from the begin-
ning, the operator (3.10) instead of (3.7). Indeed, under assumptions which generalize

the case of interest&x.k/ = g \/;k—ﬁ,e*ik'x — (see Remark 3.2), the coupling functions

arising in the commutatof#d ; A’] and[[H AT A’] do not grow inx and therefore do
not require .H/ for bounding them.

6. Positivity of the Truncated Commutator

Before tackling the proof of Theorem 5.2 head on, we go part of the way by proving the
positivity of a simpler commutator. Recall that we are considering Hamiltonian (2.7) but
with the parameteg absorbed into the coupling functi@y (see (2.9)). Now, let

Boa = P1BoPu; (6.1)
where
Bo = [H; A] (6.2)
and
P1 = P E1.Hof: (6.3)

Recall thatl is an energy interval containift§} butdisjoint from the rest of the spectrum
of Hpart. The main result of this section is the following lemma.

Lemma 6.1.Assumeg? « < 1.Then

_ I 1 -
Boyx = zHfP1 > - Pa; (6.4)
’ 2 2
and, if in addition3|z| < , then
H Bo.x —2zI72P1 H <2 H H 2Py | (6.5)

where|A| := +/A*A, for a closed operatoA.
Proof. We begin with a computation. F&j as in (6.2), we have by (5.15) with= 1,
Bop = Hf + (5 (6.6)

wherel = a*.G4/ + a.G,/, and

~ 3
Gkl = k- ViG.k/ + SGy K/ (6.7)
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Inequality (4.9) with = 1=4 andf = Gy yields

~ 1 Gy ?
:I:I§—Hf—l—4/|X|; (6.8)
4 [
which implies
3 Gx?
Bo > ,Hr - 4/%: (6.9)

SinceH¢ > 0, inequality (2.10) implies that

H )M E1.Ho/ H < Cwm; (6.10)

for anyM < oo, provided supl < infcontspedpar — sup/ @ The last two
b !
inequalities imply that
— 3 2\ =
BO;l > ZHf — Cg Pq: (6.11)
Next, definition (5.1) yields that

P = Ppat®1 + Ppant® He> : (6.12)

Since, by energy conservation,

PpatE1.Ho/ = Y PoagEa.He +E'/; (6.13)
i:Ei<E]
we have that
He ﬁpartEl-HO/ = 1§partE1-H0/; (6.14)

where ; is given in (5.8). This yields
He 31 > min. 1; /31 = 31; (6.15)

which, together with (6.11) and the conditigh <« , implies (6.4).
The proof of (6.5) is based on the following identity:

— -1 —1= -1 —1=
(Bo;l — z) = H 2 (1+ K) Hy 2, (6.16)
where
K = He Py i —2/P1 H 2 (6.17)
It suffices to prove that fag2 <,
1
IKIN= 55 (6.18)

N
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which would imply (6.5). To prove the latter inequality, we wike = Kg + K1, where
Ko = —zH7 1P} (6.19)

and
Ki = Hy 2P TP H T2 (6.20)

Since|z| < =3, we have thallKop|| < 1=3, due to (6.4). Next, using (6.7), inequality
(4.6) withf = Gy, and inequality (6.10) again, we arrive at

Ki = Hf™?P10.9/ + 0.g/P1 H; % (6.21)

which, together with (6.15), yields thaK,| = O. ~T2g/. Sinceg? « and since
IKo|l < 1=3, this implies (6.18) which in turn yields (6.5)o

Now we boost this proposition to a more complicated result. Let

By :=[H;Ay] and §V;1 = 31 Bv 31: (6.22)

< 1andg « "¥* 72 Then

Lemma 6.2.Assume? <

_ 1 1 -
Bvii > sHe P21 > 5 Pa; (6.23)
’ 2 2
and, if in addition3|z| < , then
H Bv.i -z 2P, H < 2” Hy 2P, H (6.24)
Proof. By the definition ofAy, we have
By;1 = Bo1 — E; (6.25)

where, sinc® 1P =PP41 =0,
E=-P, [I . PVP —Pv*ﬁ] =
=P11PV*P1 + hc:
= P1IPIR?P1 + hc: (6.26)
We claim that
IE| < C g®" %2 (6.27)
Indeed, sincd = a*.Gx/ + a.Gy/, estimates (4.6) and (4.7) imply that
IP1IP| < Cg: (6.28)
Itremains to estimate the operaR)rﬁg. Itis shownin Lemma 6.4 below thile IR~|| <
cg" 2. The last two estimates and the inequalii || < "~*imply (6.27). The latter

estimate together with (6.25) and (6.4) implies (6.23). Equation (6.24) is proven similarly
to (6.5). O
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Remark 6.3It suffices to prove an appropriatés-form bound onE, rather than the
norm bound, Eg. (6.27). The former bound would improve our final estimates.

Lemma 6.4.We have
IPIR-| < Cg"~¥2 (6.29)
Proof. We write

R-IP/*R-1P/ =PIRAIP: (6.30)

Next, we analyze the operatbﬁgl restricted to Rann, < . To this end we need
the Pull-through formulae (see (4.11) - (4.12))

a.k/R+ = Ry g a.k/; (6.31)
R-a*.k/ = a*.k/Rw1 x/; (6.32)

where
R = Rely o (6.33)

Recalling (2.9) and pulling, ilRA1 = (a*.GX/ + a.Gﬂ)ﬁf <a*.GX/ + a.GX/),

thea’s to the right and tha*’s to the left with the help of the Pull-through formulae
(6.31) and (6.32), we obtain

IRG = M + L; (6.34)
where
M = /G_X.klﬁg;!_k,Gx.k/d3k (6.35)
and, with1; = 1 kj/,
L =a*.Gx/R-a.Gx/ + //G_x.kl/a*.kglﬁg;!ﬁ!za.kllGx.k2/d3k1d3k2
n / Gy .kK/RZy ya.k/a.Gu/d + adjoint (6.36)
Using that||R-y || < "~1, we estimate the latter operator by

| b= Lomes | = 2"_2//|Gx.k1/GX.k2/| la.ka/a.ka/ pie< |

2
+2<"‘1/|Gx.k/| la.k/ pe< ||> : (6.37)
Applying inequalities (4.17) and (4.18) to the r.h.s., we arrive at

< 42 g. /% (6.38)

H He< L Hes
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1=2
where, recallg. / := sup| [ G+'2) . Since by our restrictiong. / < Cg./ ",

X 1<
this in turn yields that, on Rany, < ,

IRZl = M + 0. 2g2 2. (6.39)
Now it is not hard to convince oneself that
IM]| < Cg?*: (6.40)

Indeed, remembering expression (6.12)Fqrone can represe as a sum of terms
of the form

/ fi.1/d! _
N4 He —Elif24 "2
0

wheref;. 1/ are bounded bgg? (in fact, decaying ato), continuous functions. Insti-
tuting the change of variable ds— = "~1.1 4+ H¢ — EJ'/, one shows easily that

each integral is bounded Igg2" 1.
Estimates (6.30), (6.39) and (6.40) and the conditiérc " imply (6.29). O

7. Proof of Theorem 5.2
First we estimate from below the following operator
By:1 := E1.Ho/[H; Ay ]E1.Ho/: (7.2)

Using the definition oAy (see Eq. (5.2)), we writBy .1 as

Bv;1 = By;1 + P1C*P1 + P1CP1 + P1FPq; (7.2)
where, in accordance with (5.2), (6.2), (6.3) and (6.22),
P1 =P E1.Ho/; (7.3)
C=[H-E; V] + Bp; (7.4)
F=Bo+ V*PI + IPV: (7.5)

Here we used that, by virtue of the definition\of we may identiftV =PV P.
The key to the proof is the following inequality which follows from an application
of the Feshbach projection method (a derivation is given in Appendix B):
o > inf spec{E I RanPl}; (7.6)
where
o = inf speo{BV;l i RanE1.H0/} (7.7)

and

E—F —cC* (§V;1— 0)_10: (7.8)
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We may assume here thatg3< ; otherwise Theorem 5.2 follows readily from con-
ditions (5.10)—(5.11) on the parameters. With this assumption, Lemma 6.2 is applicable

and yields tha(ﬁv;l - o) is bounded on RaR 1 . Hence (7.8) is well-defined.

Our task is to estimateé on RanPq from below. The first term on the r.h.s. of (7.8)
can be easily analyzed. Due to (5.3),

VEPI + 1PV = 2 IR (7.9)
Next, Egs. (6.6)—(6.10) imply that
P1BoP1 > (Z He — ng) P1 > —Cg?Py: (7.10)
Hence, on RaR1,
F >2 IR —Cg% (7.11)

Next, we estimate from above the operator
— -1
G .= C* (Bv;l . 0) oF (7.12)

on RarP1 . A large part of the remainder of this section is devoted to this estimate.
As mentioned after Eq. (7.8), Lemma 6.2 is applicable to (7.12). It yields

(G) | = 2|HPPac HZ: (7.13)

From now on, we assume thate RanP , which implies thaP 1 = 0. This relation,
the definition ofC (Eq. (7.4)), and Eq. (6.6) imply that

[Fae | < [wr s
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where
-l iB2.
Ap = H; %P1 . Ho — E1/RZIP; (7.18)
Az = —H 2P RAIP Hy; (7.19)
Az = —H P, RAIPIP (7.20)
and Y >
Az :=H; PP IRNIP: (7.21)

To estimate the first of these terms we use the expre®siofEgs. (6.3) and (6.12)) and
the estimaté{.Ho — Ej/R~| < 1 to obtain

—1=2 — =
ALl = IHg ""E1.Ho/P par - [R*IP |

—1=2
+ [IPpart® He> Rell - IHg

1P|
Now we use that, due to (4.6)—-(4.TRIP|| <29, I[PHf| < ,

H Hi %2 pes 1P H < HH]leza*.GX/

4 2 Ha.GX/P H <2g; (7.22)
use inequality (6.29) and use the fact thgt > 1 on Ran El.Holﬁpan/ to obtain
lAll < C P29 42 g (7.23)
Similarly we have
lAs <C g 42 g (7.24)

Next using the estimate1E|—|f_1:251|| < 2 12 (see (6.15)||R|| < "1, (6.29)
and|PIP| <g,/, we find

Al < "~ *2g?:
Now taking into account expressions (6.3) and (6.12Pforwe estimatéP 1 H]Zl:2|| <
C ~172. Next, using (4.6) and (4.7) we find
IP1H: IR < [Hy 2% G/l IR~

+ IP1H; ) a.Gx/Re |

<C.g-"t4 Egrl
Finally using (6.29), we obtain

lAgl < C g2 (7.25)

Collecting the estimates above and remembering (7.17) and rememberifigthat
we find

IHf ¥%PalH —El;VIP| <C g( 14 [72 »%24 —12+-32). (7.26)



580 V. Bach, J. Frohlich, I. M. Sigal, A. Soffer

This together with (7.13), (7.14) and (7.16) gives
G>-Cg?1+ 2 24 1—1 2 20-3 2 —1n-3g2;. (7.27)
Finally, combining the last inequalities with (7.8), (7.11) and (7.24) yields orPRan
E>2 IRA —Cg2l+ 2 24 12203, 2g20-3 -1 (7.28)
This estimate together with (6.39) implies that on Rgn
E>2M—Cg2.14 2 24 22034 2¢20-3 —1, w2 -2, (7.29)
Now we analyze the operatBrMP . Introducing

<il i >j/ <j/.
Poat == D Ppar and Pt := lpan — Ppat’s (7.30)
i:Ei<El

and noting thatHpart — E/ Pb;{/ > PF;;{/, for some = 0, we estimate

HPMP - P(/G_X.k/Pb;jtlﬁf;!_k,GX.k/d3k>P <Cg? (7.31)

This relation can be rewritten as

. -1
PMP = 3 [ fg.U/[He+ 1 —EI2+2) Td1P + 0.0%;  (7.32)
i:Ei<El

whereEl" := EJ — E' andfj.1/ = [ .Ajj/*AjjdS: with the matricesAjj defined

kj=1
in the paragraph preceeding Eg. (3.5). Now using the change of the variables formula
and the mean value theorem we find

/fi,-.!/[.Hf + VB2 2
=/fi,-. —He/[. —EV/2 424
:ffi,-. N —EV2 42l 4R
where
1 -
R:/ ffig. —sHe/[. —EN/24+2171d dsHg:
0

Since the functionsj; have, by the assumptions @y .k/, bounded derivatives, we
obtain that

RP = 0 (i) : (7.33)
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Using this together with Eq. (7.32) and with the fact tigt !/ vanish at! = 0 and
remembering the definition &; (see Eq. (3.5)) yields on R&n

O.
M = ,—,J.[1+o--.1/+o. /]+o.gZ/; (7.34)
whereo-.1/ stands for a function df vanishing as' — 0.

Equation (7.34) inserted into (7.29) yields

E>-J[2_0.1/-0. /]

(7.35)
_O-g2/[1+ 2 —2+ 171 2 2!!—3+ 292--—3 —l+ n—2 2]

Since0j > j92 with j positive and independent gfand since > ", we may write
(7.35) on RarP1 as

E - 0j.2— 4/,

(7.36)

where

n 11 2 g2 2
1=O(—+—2+ﬁ+72+7>+0".1/<22 (7.37)

This together with (7.6)—(7.8) (see also the paragraph after Eq. (7.8)) implies

By.-1 > L_l/

E1.Ho/%; (7.38)

where, we recally;j is the smallest eigenvalue 0f .

Now we derive (5.9) from (7.38). Lel cc 1’ and pick a smooth functioh
supported inl’ and equal to 1 orl.. Moreover, we denotE,. / =1—E;. /. We
use the estimate

| (h-H/—h.Hor) Ho+i/2 | < Colnl; (7.39)

which can be easily derived using operator calculus (see, e.g., [14]) and (4.6)—(4.7).
Recalling thaBy.1 = E1.Ho/ By E1.Ho/ andBy = [H; Ay ], we may write

Ei.H/ByE1.H/ = E1.H/By.1/E1.H/ + S + T; (7.40)
where
S = E1.H/E1 .Ho/By E1/.Ho/E1.H/ + adjoint
and
T = E1.H/E1 .Ho/By E1/.Ho/E1.H/:

Writing E1.H/E1/.Ho/ asE1 .H/(h.H/—h.Ho/) - E1/.Ho/ and using Eq. (7.39) we
obtain .
El.H/Elf.Hol = E1.H/O.g/; xf

and similarly for the adjoint operator. The latter estimate implies that

T =E1.H/O.g%/E1.H/: 741
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Next, we write
Bv = [Ho; Al +U;

whereU := [Ho; PVP — PV*P]+[l;Ay] and use thatHp; A] = H¢ and therefore
commutes witHE1/.Hg/ so that

S = El.H/E]_/.H()/U E1/.Ho/E1.H/+ h.c.:

Again Egs. (6.29) andx/, together with elementary estimates similar to those performed
above imply that
S = E1.H/O. "=%29° JE4.H/: 7:42/

Combining estimates (7.40)—(7.42), we obtain
E1.H/ByE1.H/ > E1.H/.By:;1 —C %292 JE1.H/:
Now using inequalities (7.38) and (7.39) we arrive at

yj '2"_ 1/(

Eq1.H/ByE1.H/ > [ 1-0.g/)—C "32¢? ]El.le:

It is not hard now to identify this inequality with (5.19).

A. Proof of Lemma 5.6

Both statements of Lemma 5.6 follow in a standard fashion (see [25], Theorems XI11.23
and XI11.25) from the following result (cf. Theorem 4.9 of [6] and Theorem 7.1 of [23]).

Theorem A.1.Under the assumptions of Lemma 5.6,
A" .H—2z/"HA)" | =C (A1)

uniformly inz € C* withRez € 1, provided > %
Proof. Here we prove this theorem for= 1. Its extension to the case of> % is done
by repeating the proof of Theorem 7.8 of [23].

Our proof follows closely the proofs of Theorem 4.9 of [6] and Theorem 7.1 of [23].
Letl cc 1; cC 12 cC 1’ andf € C§°. 12/, with = 1 onl; andf > 0. We use
the following notation,

M = F.H/[A; HIF.H/; (A.2)

Note that due to (5.27M > f.H/? andM* = M. Since|.H — i"M — z/u| >
Im{.—H + i"M + z/u; u)=||u|| > Im z|lu| and similarly for the adjoint operator, we
have that (see Lemma 4.4(a) of [6] or Lemma 7.3(a) of [23]):

for">0andImz>0,H —i"M — zis invertible. (A.3)
DenoteG~.z/ = .H — i"M — z/~1. Moreover, we introduce also
Fu.z/ := DG-.z/D with D = (A)~%:

In what follows the argumerztis assumed to satisfy Ree 1 and Imz > 0; itis fixed
and often omitted from the notation. We begin with a series of simple lemmata.
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LemmaA.2.Forz e Ct withRez € 1, and" > 0,

[G.2/|| < C="" (A.4)
Proof. Letf = f.H/. TherelationgfG-* |2 = (G:f2G-)-,M > f2andimz >0
imply

IFG"|? < 5~ (GE2"MG)-

N
= [

=

i (GF.2"M +21m 2/Gr)-;

where we used the notati¢B)- = (”; B”). Now, an application of the second resolvent
equation yieldgf G- ||2 < 5+ (iG¥ — iG~)-, which in turn implies

B |1=2

1£G-"| < %}(Gv» : A5)

and therefore
IFG < %HG" 12 (A.6)
Next, applying the second resolvent equatiotcandGg and using thal f Go|| <
0o, thanks to disiz; R\ 11/ > 0, we find
IFG|| < C.1+"|G~|I/; A7)
wheref = 1 — f. This inequality together with (A.6) implies (A.4)o

This lemma and its proof have two consequences important for us:

IF.H/G-.2/| <C; (A.8)
uniformly in** > 0, wheref .H/ = 1 — f.H/, due to Egs. (A.4) and (A.7); and
|f.H/G.z/D|| < C"~¥2||F.2/| ¥ (A.9)
due to Eg. (A.5) with> = Du. The last two equations imply in turn that
IG=.2/D|| < C(1+"~F2||F.2/|*?): (A.10)

In what follows we assume thatis a cut-off function satisfying
>0; ,/ €C{.1/ and =1lonly: (A.11)
Next, we introduce the symmetric operator
A = .H/A .H/; (A.12)

which is well defined irD.A/, due to (5.19). Now defingH; A ] as a quadratic form
onD.A/ND.H/. Then

[H;A 1= .H/[H;A] .H/ (A.13)
in a sense of quadratic forms. This relation implies that the operator
B :=[H;A ]isbounded. (A.14)
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LemmaA.3.LetB :=[H;A]. Forany e C§°.12/, the operator
.H/[B;A 1 .H/isbounded. (A.15)
Here the operator in (A.15) is initially defined in a sense of quadratic forms.

Proof. In the proof below we omit the argumeht in .H/ and .H/. Using that
= , we compute as quadratic forms

[B; A1 = [B;Al + B[ ;A]l + [ ;A]B : (A.16)

Since, by (5.5), (5.14) and (5.27),B,B ,[ ;A]l and [B;A] are bounded we
conclude that the r.h.s. of (A.16) is bounded, so (A.15) follovis.

Our last preparatory step is the following

Lemma A.4. The operatorfM; A ] defined initially in a sense of quadratic forms is
bounded.

Proof. Using thatf - = f and omitting again the argumett, we compute in a sense
of quadratic forms

[M;A 1=fB[F;A |+ F[B;A |f +[f; A |BF:

SincefB, Bf, [f;A ] = [f;A] andf[B;A If are bounded by virtue of (5.26),
(5.14) and (A.15), the statement followsa

Now we are ready for a core estimate of this proof.

Lemma A.5. We have the following estimate:

dF-.z/ - -
| =52 = cOF-an + " =21F 272 + ); (A17)
Proof. Using the definitions 0G.z/ andF+.z/, we compute
E.

—Oi? =DG-MG-D:
Sincef . =T, we have thaM = fB f. Now we decompose

dF-

F T Q1+ Q2+ Qs; (A.18)

where

Ql = DG"f_B f_G"D,
Q. =DG-fB fG-D + DG-fB fG-D;
Q3= -DG-B G-D:

We bound now th&j’s. Equations (A.14) and Eqg. (A.8) imply

IQ1ll < IDG-F|?IB || < C: (A.19)
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Next, (A.8), (A.9) and (A.14) yield

IQzll < 2IDG-F[IB [[|FGD]
< %HF--HFZ: (A.20)

The termQs is more complicated. We decompose it as

—Q3 = Q4+ Qs; (A.21)

where

Q4 =DG+[H —i"M —z; A ]G-D Skl
and

Qs =i"DG~[M; A ]G-D:
Expanding the commutator i/, we find
Q4 = DA G-D — DG-A D:

Hence, due tgd DA | < C and (A.10),

1Qall < 2|DA [IIG-D|
< C.1+ "2 F ¥ (A.22)

Finally, we have due to (A.10) and Lemma A.4,

IQsll < "IDG-[I2[I[M; A ]|
<C." +||F-||/: (A.23)

Now, Egs. (A.18)—(A.23) imply (A.17).0

To complete the proof of Theorem 5.5 we iterate the rough estimate

C
IF2/|| < (A-24)

which follows from (A.4), with the help of differential inequality (A.17). On the first
step plugging (A.24) into the r.h.s. of (A.17) we obt#ﬂ%“‘ < $. Integrating

the latter inequality fromt' to 1 and using that, due to (A.24)F1.z/|| < C, we find
|F-.z/| < Clog %. Plugging the latter estimate into the r.h.s. of (A.17) yields now

1
HdFd--".z/ <cC log =
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B. Feshbach Projection Method

Lemma B.1.LetB be a self-adjoint operator on a Hilbert spaté= H; & Hy and let
(in the obvious notationy2 > idy,, > 0.Then g := inf specB is either> or
it satisfies the relation

o = inf spec{Bll — B12.Boo — 0/_1821}2 (B.1)
Proof. Let o < .The Feshbach projection method implies that .B/ iff

€ (Bll — B12.B22 — /_1521): (B.2)

provided < , whichimplies (B.1). O
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