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Abstract: In this paper we further develop a general theory of metastable states re-
sulting from perturbation of unstable eigenvalues. We apply this theory to many-body
Schidinger operators and to the problem of quasiclassical tunneling.

1. Introduction

Though the notion of quantum resonance is one of the central notions in physics, the
mathematical theory of this phenomenonis stillin its early stages. Usually, the resonance
is defined in terms of poles of thtmatrix or Green'’s function, bumps in the scattering
cross-section, or solutions of the Seobiriger equation with certain boundary conditions
at infinity, while its physical picture is that of a metastable state. It is the latter picture
that still is very poorly understood and to which our paper aims to make its modest
contribution.

We consider in this paper a self-adjoint operdifyron a Hilbert-spacé{, such that
Hy has a (possibly degenerate) eigenvatiiewhich is embedded in the continuous
spectrum ofHy. We perturbHy by a symmetric operatoil” such that the operator
H = Hy + W is self-adjoint, and study the Satihger evolution governed b¥:

0 = Hp. (1.1)

We assume that initial conditions are spectrally localized (with respé€) to a neigh-
bourhood A, of Ey:

Yo = ’(Mt:o S RanEA(H). (12)
Here,FE A () is the characteristic function of an interval
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One expects that the eigenvallig of Hy is unstable under the perturbatitn, for
W sufficiently small. Our goal is to understand how this instability manifests itself on
the evolution given by (1.1)—(1.2).

An important additional structure we need is given by a self-adjoint operator
on H, which measures the degreelo€alizationof vectors from#. Namely, vectors
in the domain of< A >%= (1 + |A|%)*/? for « sufficiently large are said to beell
localized In other words, by localization ap € , we mean its localization in the
spectral representation df. An orbit(t) € H is calleddispersive or locally decay-
ing, if [|[<A>~2 ¢(t)|| vanishes ag — oo. An obvious example of an operatdris
the coordinateg (or more preciselyiz|), if H is anL?-space of functions af. How-
ever, sometimes other choices are more convenient, especially the generator of dilation
transformations.

Let P be the orthogonal projector é&fy onto Null(Hy — Ep), P = 1. — P, and letd
be the reduced Hamiltoniald = PHP. We measure the smallness of the perturbation
W by the parametet = || <A>> W P||. We show that) can be written in the form

1/)(15) = wres(t) + wdisp(t)7 (13)

wherey,.s(t) = (L+O(k)) P (t), aisp(t) is dispersive, i.6]<A>" gisp(t) || — O
ast — +oo, and

Py(t) = e P(0) + O(s* 4 (t + 1)), (1.4)
for some bounded operatarsatisfying
Rel= FoP+0O(k) and Im\=—T+0O(x%), (1.5)

wherel" = 7(WPG§(H — Eo)PW)p > 0, and we used the notatiqal) p = PAP |
Ran P for an operatord. The delta-function is defined in (A.24).

Equations (1.3)—(1.4) paint the following picture of the resonance behaviour (see
Remark 1 of Sect. 2.2 for a technical discussion). A system which is initially localized
in a small spectral interval around an unstable eigenvalue radiates energy/probability to
infinity, approaches the unstable unperturbed state, stays near it for a period of time of
order /T, but then eventually loses all the probability to infinity. The decay law (1.5)
is given by the celebrated Fermi Golden Rule.

We apply the result above to Sdidlifiger operators and in particular d-body
systems and to the problem of tunneling.

Remarks.1. Equations (1.3)—(1.5) imply thdf has no eigenvalues in the interval

i.e. that the eigenvalugy of Hy is unstable under the perturbatitin, and that no new
eigenvalues emerge. If one is interested in this result alone, a stationary approach would
give a simpler proof (cf. [AHS, Sig3] which contain results in this direction).

2. The perturbation parametecan be small even whé#i is large. Exactly this happens

in the tunneling resonance problem. In this cHéés large but localized in a domain in
which P is very small. Our result establishes a relation between the tunneling resonances
and the Fermi Golden Rule not observed previously.

3. The bounded operatardescribes theesonancesf H splitting out of the eigenvalue
Ey of Hy to the ordeiO(x2%). One can extend the proof of (1.3)—(1.5) in order to detect
the resonance behaviour and obta&isonances to an arbitrary ordefhis way, one can
replace the conditiof > 0 by the condition which essentially states ttiet imaginary
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part of the resonance in question does not vanish at some ¢gderdiscussions after
Eqg. (1.11) and in Sect. 3.1).

4. The assumptiol > 0 is satisfied generically for one-body Sotiriger operators
[AHS]. The same is expected to hold in a much more general context. Under stronger
direct assumptions oH this assumption can be essentially removed (see Remark 3 and
discussions in Sects. 2.1-2.3 and 3.1).

Strategy.The key tool used in the proof is a linear variant of the Liapunov-Schmidt
projection method in the theory of stable and unstable manifolds, or time-dependent
variant of the Feshbach method of perturbation theory. Namely we project Eq. (1.1)
along the subspaces R&hand RanP to obtain the new equations

i0,P1p = (Eo+ (W) p)Ptp + PWPY, (1.6)
and
10.Py = HP + PW P. .7

We will notuse the second equation in an essential way; instead, we remark the following:
in order to controk) = P uniformly in x (or W), we would like to use a local
decay estimate foe~*#%)(0). The latter however does not hold for arbitrary initial
conditionsy, = v(0), but in general only for initial conditions from certain spectral
intervals with respect tdf, see Condition (A5) and Sect. 4. Now, even)if is from

an appropriate spectral interval féf, the initial conditiony), may not be so foff. To
surmount this problem, we observe that sifités very close ta> HP + PH P and since

Yo € RanEy(H), the portion ofy, orthogonal to Ram,/(H) is very small. HereA'

is an interval containing\, andgx () is a smoothed out characteristic function of the
interval A’ (in particular,gx/(\) = 1, A € A’). So we can expregsin terms of the state

Ya = g (HY (1.8)

anda. This ingenious idea was used first by [SW3]. It yields the following representation
for:

¥ =B'Py+ (1L + B )iy, (1.9)

where B’ = O(x) (i.e. B’ is a bounded operator with norfiB’|| < Ck). Sincey =
P +1), the full solution is of the form (1.3) withb,.s(t) = BP(t) andia;sp = Biba,
whereB =1 + B’ = 1 + O(k).

With Egs. (1.6) and (1.8)(1.9) in place, the stage for analysis is set. The component
14 satisfies the local decay property uniformlyiby Assumption (A4) which is verified
for a variety of systems. One important step must be made though, before we embark
on estimations o1 (t) as a solution to Eq. (1.6): we iterate Eqgs. (1.6) and (1.7) (or the
resulting equation fog,). This is the only place where Eq. (1.7) is used. The iteration
is a rather subtle affair and it takes us to the equation

i0, P = APy + f, (1.10)

where) is of the form (1.5) and satisfies the estimate

r(t) = —i /Ot e~ M= £(s)ds = O(k), t > 0. (1.12)
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The purpose of this iteration is to pick up the leading imaginary term in the bounded
operatorA multiplying the functionP1)(t). This leading term is of the second order by
Assumption (A5). As a result one needs only one iteration. In general, one should iterate
until such a term appears (see discussion in Sect. 3.1). In that case the bounded operator
A yields the resonances @f generated by the perturbation 8% to a higher order.
Equations (1.10)—(1.11) as well as a priori estimates for the dispersivepéotm a
foundation of the proof of the result outlined above.

In the analysis above, Radn plays the role of a stable manifold, so the function
Vres(t) describes the motion along this manifold and the componéstexpected to
decay, at least locally. (This local decay or radiation to infinity differentiates between
infinite and finite dimensional dynamical systems.) However, there are two major dif-
ferences with the standard case. The first one pertains to the pecularity of the resonance
problem: The stable manifold is not really stable. It behaves as a stable manifold for long
time intervals — the life time of the resonance in question — but eventually it disintegrates
itself. The second difference is due to the fact that our problem is linear. This allows us
to seeka priori estimates for the dispersive paitrather than to use the equation for it,

Eq. (1.7).

History. Since the early days of quantum physics, the resonance phenomena occupied
a central place (see e.g. [BW,KP,S,WW], and [LL] for a textbook discussion). The
mathematical theory of resonances could probably be traced to the work of V. Weisskopf
and E. Wigner [WWJ; in its modern form, it was laid down by B. Simon [Sim1] who
used the theory of dilation analytic Hamiltonians due to J. Aguilar and J. M. Combes
and E. Balslev and J. M. Combes ([AC, BC]). This approach was further developed in
[Sim2, Sigl, Hun2, Ger, HeSj, HM]. Details and extensive references can be found in
[HiSig]. It requires the potential in question to have some analyticity properties at least
in a neighbourhood of infinity. A theory dispensing with the latter condition was initiated

in [Ort].

So far the theory developed was a stationary one, despite the fact that the physical
picture (but not the physical definitions!) was that of a metastable state. The time-
dependent theory was initiated in works of E. Skibsted and W. Hunziker ([Sk1,2, Hu2]),
and a space-time and the phase-space-time and variational analysis was given in [GS]
and [PF], respectively. A new powerful approach was suggested by A. Soffer and M.
Weinstein [SW3], who also obtained a rather detailed space-time description of evolution
of metastable (resonance) states in the one-bodyo8utgér case and for a Sduinger
particle coupled to a massive quantum field. Our paper generalizes the result of [SW3] to
many-body Sclodinger operators (and degenerate eigenvalues). Besides we also treat
the case of quasiclassical resonances, not considered in [SW3]. Though our approach
follows the same general line as that of [SW3], we had to introduce some essential
changes right at the beginning in order to make it applicable to a considerably wider
class of systems.

The approach outlined above was introduced in [SW1] (see also [SW2] and [BP]).
The latter work was further improved and coached in terms of the stable-unstable mani-
fold theory in [PW]. This approach is in fact what is known in physics as the (Feshbach)
projection method (with the projection operafoy. It is usually applied to the stationary
Schiodinger equationi{ — E)y = 0, while we apply it to the Scbdinger equation
(H —i0y)y = 0. It serves also as a starting point to a renormalization group construction
in a recent work [BFS1-3].

Notation We use the following notation besides the one introduced alignex) denotes
the characteristic function of an interval, so thatEs (H) is the spectral projector of
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H corresponding to the interval. The length ofA is written as|A|. A smoothened
characteristic function of an open bounded intetxat- R is denoted aga, i.e.ga €
C§° (A1), whereA; is a slightly bigger interval thamk, andga()\) = 1 on A. We set
ga =1—ga.

The norm in the HilbertspacH is denoted a$-||+ , and(-,-) is its inner product.
The expectation value of an operatBrin the statey is written as(B),, = (¢, By).
Moreover,(B) p stands for the operatd? BP | RanP on the space RaR.

The domain of an (unbounded) operatbon H is written asD(A). Fort € R, let
<t>= (1+t?)Y?, and< A>= (1+ A* A)Y/2, whereA* denotes the adjoint. We also let
ReA=(A+A*)/2,and ImA = (A — A*)/2.

For a self-adjoint operatdil, we setb(H — \) = % Im(H —X—i0)~%, and P.V.{ —
A)~! = Re( —\—i0), wherether.h.s. are assumed to be defined between appropriate
Banach spaces.

Let £(#) be the space of bounded linear operators{fomith the standard norij- ||.
For a family{ Bs rbrace of operators inC(#) depending on the parametee> 0, we
write B; = O(s) if || Bs|| < C's, whereC is a constant independentaffFor a complex-
valued functionf(s), f(s) = O(s) meansg f(s)| < C'sandforg, € H, ¢, = O(s) means

Finally, for notational conveniencé€, will denote a generic strictly positive constant
whose value can vary from expression to expresgiois @llowed to depend om, 3, |A|,
see below, but not or or t).

2. Main Results

2.1. Assumption3Ve will work in the setting presented above, and where dim Ran
oo. The operator$ly and H are assumed to be self-adjoint on the same domainijand
to be symmetric. We also assume that there is a self-adjoint opetaod a number
« > 2 such that:

(Al) || <A>“ P|| < o0,
(A2) the perturbatioV satisfiess = || <A>> WP|| < oo,

(A3) the multi-commutatorad})(H) are H —bounded, uniformly il k = 1,... ,n,
wheren > a +1,
(A4) the following local decay estimate holds for ale D(<A>%) andt > O:

|<A>= 7t gy (H)Pg|l3 < C <t>~"||[<A>" Pgll,  (2.1)

for some constar@ > 0 independent ofV/,
(A5) the Fermi Golden Rule condition holds fék in the sense that there iSg > 0
such that the bounded, nonnegative operator

I'= 7T<W(5(H — E())FW>F
satisfies:
I > Cor2. (2.2)

Remarks.1. (A1)—(A3) are easily verified in the applications (see Sect. 2.3).

2. The uniformity clause in (A3) and (A4) is a restriction on the clasB/d$ allowed
for a givenHo.
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3. In Sect. 4, we derive Condition (A4) from the Mourre estimate. It is much easier to
check the latter, as we demonstrate in examples below.

4. It is shown in the appendix thatis well defined and satisfidd|| < Cx? (see the
remark after (A.24)). Hence (A5) gives

Cor? < ||T|| < Ok (2.3)
5. Ifthe Mourre estimate holds then one can show (see e.qg. [Sig2]) that?+O(k/3),
wherey = m(U§(Ho — Eo)PU) p, andU = W/k.
6. Condition (A5), or its more precise form given in Remark 5, is conjectured to hold
generically. For a more detailed discussion in the case ofo8ahgér operators see

Paragraph 2.3. In fact, Condition (A5) can be removed at the expense of requiring a
largera in Conditions (A1)—(A4) and a lengthier proof (see discussion in Sect. 3.1).

7. The smoothness Condition (A3) can be thought of @ &R) property of the family
H(0) =U@®)"*HU(0), whereU(#) = exp(d A), the dilation group.

2.2. Abstract resultWe present our main result in the setting of a general Hilbert-space
(in Theorem 2.1). We treat the case of Safinger operators in Sect. 2.3.

Theorem 2.1. Leta > 2and0 < 8 < min{1/2, o« — 2} and lety be the solution of
10 = H1, with initial conditionyg € RanEx(H) N D(<A>®). Then there exists a
constantxg (depending omy, 8 and|A|) such that forx < ko we have the expansion:

P(t) = (L + O(x)) PY(t) + Yaisp(t), (2.4)
whereyg;,(t) is a dispersive wave satisfying foe> O:
|<A>" Yaisp@)| | < O (]|<A>® Pio||n <t>"* +7% <t>7F) | (2.5)
and P (t) satisfies fort > 0:
Py(t) = e M Py + O <t>7P). (2.6)
Here ) is a bounded linear operator dRan P satisfying
Re\ = EoP + PWP — PW (PV.(H — Eo) ™) PWP + O(x%), (2.7)
and
Im A= —T +O(x°). (2.8)
The terms on the r.h.s. of (2.7) and (2.8) are well defined.

Corollary 2.2. Under the assumptions of Theorem 2f has no eigenvalues in the
interval A.

Remarks.1. Equations (2.4)—(2.8) imply that though any orb(t) starting atyy €

RanE,(H) is dispersive (i.e. locally decaying), fP+||2, small and for anyz > 0,

the statey, , _,(t) is close to the “stationary” staje , _ ,e " Pt in a time interval
of the ordert In(x~1).

2. Our analysis yields a more detailed information abB{(t) andi4;.,(t) than the
one given in Theorem 2.1. The dispersive wave satisfies
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|| <A> "% thaisp ()| < C||<A>Y Pifyg||3 (<t > + <t >—F x2729)
+C||Papo| |3 <t>"F k1725,
SetPy(t) = e~ Pq)(0) +r(t). Then we have in particular
Ir@)lln < C ([[<A> Pho| [y 7727 +[| Piho| [y £1~) <t>77 . (2.9)

3. There are various versions of Theorem 2.1 in which the condijiion Ran EA(H)N
D((A)*) is either relaxed or modified (e.g. t@ € Ran P).

2.3. Schodinger operators. In this section, we choose our Hilbert-space toHe=
L?(X) = L? (with norm||-||2), whereX is a finite dimensional inner product space,
the configuration space of a system in question. The Hamiltonian is given by

Ho=—-A+V, (210)

whereA is the Laplacian ok, andV is a real function orX called the potential. Our
choice of the operatod is the dilation generator

A=%(w~p+p~l’),

wherep = —iV, and the dot product is a coupling &f and X’. We assume here that
W = k'U, wherex' is a real number, and : X — R, dimRanP < oo. Setting

k = || <A>> W P|| as before, we have = +'|| <A>* UP||, andx — 0 is equivalent
to k' — 0, provided|| <A>* UP|| < oo (see (2.11)). Making the perturbation small
means here to make small. We assume that for some> « + 1:

(S1) V,U € C™, with bounded derivatives,
(S2) (i) (@-V)*V is H-bounded, X k < n,
(i) (z-V)*U is H-bounded, (< k < n,
(S3) there exists a neighbourhond of Ey such that

Ea,(Ho)i[Ho, A]Ea,(Ho) > 01EA,(Ho) + K,

wheref; > 0 andK is a compact operator ai?,
(S4) the Fermi Golden Rule Condition holds in the sense that

I = n(xY2(US(Ho — Eo)PU)p > 0
(T is positive definite).

Conditions (S2) witht = 0,1 and (S3) imply that the projectioR satisfies the
following two estimates:

|| <A>“ UP|| < oo, (2.11)
and for any multi-indicesn; andm; with |[my | < n:
[|lz™p™ P|| < oo. (2.12)

Indeed, proceeding as in [HS1,CFKS], one can show that theré is-&0 such that
||e?1#l P|| < oo. Using then $? + V)P = EoP, and Condition (S1), it is easily shown
that||e®Ip™ P|| < oo, for [m| < n, from which (2.11) and (2.12) follow.
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Remark.In the one-body case (see e.g. the problem of tunneling in Sect. 2.3.2), Condi-

tion (S4) was shown to hold generically at least frsimple ([AHS], for more details

see below). The latter is still a conjecture in the many-body case. The only general re-
sults in that case are those of [AHS]. Translated into our context they state, under some
additional conditions, that(Ho — Fo) 7 0 and that, given a many-body Hamiltonian

Hy as above and an open setc X (for the definition ofX see Sect. 2.3.1) there is a

real potentiald € C§°(R), s.t.(GS(H — Eo)G)p > 0 at least forEy simple.

Theorem 2.3. Theorem2.1 holds for the Schadinger operator (2.10) if we replace
Conditions(A1)—(A5) by (S1)—(S4)

The proof of Theorem 2.3 is given in Sect. 5. It consists in showing that the Condi-
tions (S) imply the Conditions (A) in the case of Sotliriger operators. The essential
partis to show that starting from the Mourre estimate (S3fgwe get a strong Mourre
estimate for the reduced Hamiltoni&h see Theorem 4.1, and therefore the local decay
estimate (A4) foiH .

2.3.1.N-body systems-or N-body systems in the physical spa#, the configuration
space is

X ={z=(21,...,zn) € R[S mz; = 0}.
Herem; is the mass of particle The HamiltonianHj is a Schodinger operator (2.10)
with V5, an N-body potential:

Vo(z) = Z Vij (@i — x5),

i<j

where the two-body potentialg, : R? — R vanish at infinity. In terms of the two-body
potentials, (S2)(i) means that ( V)*V;; is A-bounded, 0< k < n. For example, we
can take £ - V)¥V;; to be Kato-potentials ofR?, 0 < k < n. Similarly, (S2)(ii) is
satisfied if ¢ - V)*U are Kato-potentials oR?", for0 < k < n.

If Ey is separated from the thresholds £f, then Ey is finitely degenerate,
dimRanP < oo (see [HS1,CFKS]), and the Mourre estimate holds iy and A
if A is sufficiently small. Thus we obtained

Corollary 2.4. The conclusion of Theorem 2.1 holds under the assumptions on the
potentials mentioned above, provided that is separated from the thresholds &,
and if the Fermi Golden Rule Condition holds.

2.3.2. Tunneling in quasiclassical approximatiolVe consider the following initial
value problem or.2(R%):

ihop = H, (2.13)
li=0 = 1o € RanEpa(H), (2.14)

whereh > 0 is considered to be a small parameter, anig an interval to be specified,
lying at the bottom of the continuous spectrumidf andhA = {AE|E € A}. Here
the Schodinger operatoH is given by

H=p*+V, p=—ihV, (2.15)

andV is a volcano-shaped bounded potential with alocal minimum at the origin, defined
in the Conditions (T) below. We define a reference poteffjakuch that
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(i) Vois C™(RY), and such thati(- V)* Vs is bounded, & k < n,
(i) Vo(x) = V(z) in a neighbourhoodv” of the origin, and inf cra\ »r Vo(x) > V(0).

We set
Hy :p2+‘/07 (216)

and therefordd = Ho + W with W =V — V4. For & small enoughH, has a unique
(normalized) ground-state, with energyFEy separated from the continuous spectrum
of Ho. LetA = (z-p+p-x)/(2h) andk = ||<A>> Weol|2 -

We give now conditions on the potentildl and state then the result of this section,
Theorem 2.5.

(T1) V. >0,V € C™(R%), and (¢ - V)*V is bounded, X k < n,

(T2) V has a non-degenerate local minimunxat 0 and vanishes 8| — oo,

(T3) there is & > 0 such that2s = {z € R¢|V(z) < V(0) +4} has a connected
component2$** containingoo, on whichV (z) is non-trapping Vo € Q§**,

2V(0O0)—V(z)) —x-VV(x) >0, forsomed >0, (2.17)

(T4) the Fermi Golden Rule Condition holds:= 7 (5(H — E°)>13Wwo satisfies” >
CohPr?, for somep > 0.

Remarks.1. By non-degeneracy of the local minimumin (T2), we mean that the Hessian

of V at 0 is strictly positive definite.

2. From the harmonic approximation (see e.g. [HiSig], Chapter 11), it followdihat
V(0)+O(h). Hence for smalk, Condition (ii) implies that the classically allowed region
{x € R|Vp(x) < Ep} is compact. This implies thaty is localized inz exponentially
around the originYe, ¢’ > 0, 3C. « (independent of) such that

[|et=9Pm0/Pipg||; < C e /™. (2.18)

Here,pg, () is the geodesic distance betweeand 0, measured in the Agmon metric
corresponding to the enerd@. The proof of (2.18) is easily obtained e.g. from [HiSig],
Theorem 3.4.

3. SinceFEy = V(0) +O(h), then for smalk, W is supported in the classically forbidden
region{z € R?|Vy(x) > Eo}. The exponential decay (in) of o implies then that
K= ||<A>* Wp|l2 = O(e="/"), for somen > 0.

Theorem 2.5. Assume Conditions (T1)—(T4) hold, and@et 5 < min{a — 2,1/2}.
Then there is do > 0 (dependent om, 3, n, |Al, p) such that forh < hg, the solution
to (2.13)—(2.14) has the expansion

V() = alt)pr + Yaisp(), (2.19)
whereps = ¢o + O(k/h), andyy;s,(t) is a dispersive wave satisfying foe> O:

|<A>" Yaisp(t)||2 = ||[<A>* Pholl2O(< t >~ 1™ 9)
+O(< t >7P hm1x128), (2.20)

with ¢, a positive integer depending a@n 3, n, p. Moreover,a(t) = (o, ¥(t)) satisfies
fort > 0:
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a(t) = e=Mha(0) +O(< t >~P h9x1%9), (2.21)

with
ReA = Eo + W)y, — (P.V.(H — Eo) ™)y, + O(h 7265, (2.22)
Im A = —7(8(H — Eo)) pyy,,, + O(h2K5). (2.23)

We prove Theorem 2.5 in Sect. 6. A general discussion of the quasiclassical
Schiodinger problem and extensive references can be found in [HiSig].

3. Proof of Theorem 2.1

The proof of Theorem 2.1 consists of two main steps. In a first step, we establish dif-
ferential equations foP« andi,(t) (the latter function is defined in (1.8)), write the
corresponding integral equations, and bring these equations to a convenient form. We do
this in Sect. 3.1. In the second step we use these equations in order to prove the desired
estimates orPy(t) andvy4(t). This is done in Sect. 3.2. Theorem 2.1 is then derived by
observing that

¥(t) = B(Py(t) +va(t)) , (3.1)
where the operataB satisfiesB = 1L + O(k).

3.1. Differential equations foy(t) and ¢4, (t). In this section, we establish the
coupled differential equations fd?y andiy and iterate them in a suitable manner. The
main result here is Eg. (3.13) together with the set of equations (3.14). Projecting (1.1)
onto RanP and RarP yields

i0,P1p = (Eo + PW P) Py + PW Py, (3.2)
i0,Py = HPy + PW P (3.3)

Recall that)q = Pyip, whereP,; = go(H)P. To pass fronPy to 14, we multiply both
sides of (3.3) by (H) and get

i@twd :de + P;W Pa. (34)

Now we expres$ in (3.2) in terms of Py and,. Notice thatiyo € RanEx(H), so
thatvyo = g (H)1o. Hencey = g (H)y and thereforePy = Pg\(H)p. Introducing
1 = gr/(H) + g,/ (H) into the last equation yields

Py = (gar(H) + G (H))Pga(H )Y
= gu (H)Pga(H)p + gar (H)Ptp
= ga/(H)Pga(H)Pt + gy (H)Pga (H) Py + P

Hence (L — g, (H)Pga(H))P = Gp (H)Pga(H) Pt + 1)4. The following proposition
is proven in the appendix:

Proposition 3.1. g,.(H)Pga(H) = O(k) and consequently, for smatl, B = (1L —

9u (H)Pga(H))~1 exists as a bounded linear operator &) and|| B|| < C (uniformly
in s for small x).
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We have therefore
P = B' Pt + By, (3.5)

whereB’ = B—11, andB is defined in Proposition 3.1 above. Remark that 1.+O(x),
andB’ = O(k). With expression (3.5) faPy, we get

¢(t) = dej(t) + wdisp(t)y (36)
where we defined
Vaisp(t) = Ba(t). (3.7)

Equation (3.6) shows that is of the form (2.4).
From (3.2) and (3.5), we have the following equation of motionFar.

10, P = A1 P + PW Bi)g, (3.8)
where)\; is a bounded linear operator on REn
A\ = Eg+ PWBP. (3.9)

Next, we rewrite Eq. (3.4) in the integral form

_ t _
Va(t) = e Htehy(0) — i / e~ =3 p. W Py(s)ds. (3.10)
0

The last term can be transformed as follows: pick C* and integrate by parts in the
following way:

t _
—i/ e =) p W Py(s)ds
0
_ t _
= —z'e_th/ ei(H_z)SeizsPdWPw(s)ds
0
= —(H — 2) " LP,W Py (t) + e Y H — 2)~1P,W Py(0)
t _
+ / e U= H — )P W [i2Py(s) + (05 P1p)(s)] ds.
0

(3.11)

In order to make the last term on the r.h.s. of (3.11) small, we want to:t&kéhe real

axis. Such a procedure is justified in the first two statements of the proposition to follow.
The third statement of this proposition shows whgnust approach the real axis from
above fort > 0 (the outgoing condition).

Proposition 3.2. Forw € R and¢ € ‘H N D(<A>?), we have:

(i) Vt>0:<A>" e HY(H — w — ie)~1P;¢ converges i ase | 0. The limit is
denoted ascA>~ e~ *H{(H — w — i0) 1P

(i) The convergence in (i) is uniformire R, and therefore —s<A>~ ¢t (H —
w — i0)"1P,¢ is continuous as a map frol, to .

(i) ||<A>= e HI(H — w —i0) 1P|l < C(t +1)~**L||<A>* Pg||5 , V¢ > 0.
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This proposition is proven in the appendix.

Notice that as Im — 0, the individual terms in (3.11) do not converge#f
However, settingy = Rez, and using our assumption thatd>< WP is a bounded
operator (see (A2)) and Proposition 3.2, we getd¥ B acting on the second term on
the r.h.s. of (3.10):

t _
—i / PW Be =) pW Pi(s)ds
0

t _
=— / PW B'e =9 p, W Paj(s)ds
0
—PW(H — w — i0) 1P, W Py(t) + PWe BT — w — i0)~ 2P, W Pyy(0)

t _
+ / PWe U= — w —i0) 2Py W (w — A1) Pi(s)ds
0

t _
—i / PWe =) (F — o) — i0)" 2P, W PW Bipy(s)ds,
0
(3.12)

where the termPW (H — w —i0)~ 1 P;W P1(t) and similar ones are well defined. To get
the last two terms, we replacégdP+ in (3.11) using (3.8). Expression (3.12) contains
the term of order two in: that acts onPi(t).

Let us choosev = Ejp, so thatw — \y = —PWBP = O(k). Using (3.8), (3.10)
and (3.12), we get our final version of the equation of motionAar.

10 PY = APy + f, (3.13)
wherel = \; — PW(H — Ey —i0)"*P,WP, f = Z?:l fj» and thef;’s are given by

f1(t) = PW Be="ty,(0),
fo(t) = PWe H{(H — Eo — i0)~*P,W Py(0),

t _
fa(t) = —i / PWe M=) — Ey — i0) *P;W PW BPy(s)ds,
0
t _
fa(t) = —i / PWe HUE=)(H — Ey — i0) 1Py W PW Bu)y(s)ds,
0

t —
fs(t) = —i /O PW B'e =) p\ Pi(s)ds. (3.14)

The expression fok is analyzed in
Proposition 3.3. The expansion (2.7)—(2.8) holds far
The proof is given in the appendix.

DiscussionOur proofis based on estimating Eqgs. (3.4) and (3.13) (obtained estimates are
then synthesized into the final theorem with the help of Egs. (3.6)—(3.7)). Equation (3.13)

is a one-iteration of Eq. (3.8). This iteration is needed so that the bounded operator
A multiplying the vector functionPiy on the r.h.s. of the equation fdry captures

the leading non-zero term of the imaginary part of the resonance. In our case, due to
Assumption (A5), this term is the second order. That is why we need only one iteration.
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For the leading term of the imaginary part of a higher order (one can show that the leading
term is always of an even order and positive) one should iterate Eq. (3.13) furthé (
times for ordem). Controlling the resulting terms would require faster time decay of
terms likeW4(¢) which would result in a higher power in Conditions (A1)—(A4).

3.2. Estimates aP(t) andvy4(t) and proof of Theorem 2.1n this section, we show the
estimates given in Theorem 2.1. Dueic= B(Pvy + 14) (see (3.6), (3.7)) and Lemma
A.1 of the appendix which proves that
|<A>~% Belly < C||<A>" ¢|ln, Vo€ H, (3.15)
and
|[<A>"* B'¢|ly < Cr||[<A>"% ¢lln, Vo eH, (3.16)

it suffices to demonstrate appropriate estimate®¢iit) andi,(t). To this end, write
the integral equations faP(t) andwy(t) (cf. (3.13) and (3.9)):

Py(t) = e "M Py(0) + (1),
balt) = e Mhapy(0) + R(),

wherer(t) = Y. r; (1), with
t .
ri(t) = —i/ e_’”)‘(t_s)fj(s)ds7 (3.17)
0
j=1...,5and
t —
R(t) = —i / e HE=S) P Poj(s)ds. (3.18)
0

The strategy (see [SW3]) is the following: fér > 0 and some3 > 0, introduce the
norms

[rlr = sup (t+1)°||r(t)||n (3.19)
0<t<T
and
[Rlr = sup (t+1)°||<A>"* R(t)|| - (3.20)
0<t<T

Using (3.17) and (3.18), we then show thal;{ < Ck'~2%, where the constant is
independent dT’, « is sufficiently smalland & 8 < min{1/2, « —2}. TakingT' — oo

gives us the desired resuli:(t)||x < Cx~2%(t+1)~P. The corresponding estimate for
[|<A>~% ¢4(t)||% isobtained similarly. These estimates and Egs. (3.6), (3.7) and (3.15)
imply the proof of Theorem 2.1.

Ingredients of the estimations.
e The basic tool in the estimations is the local decay Assumption (A4), and its integrated
version given in Proposition 3.2(iii).
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e In order to estimatde~**!||, we use the expansion fargiven in Proposition 3.3. We
have

lle=M]|[ < CF’te=Cont (3.21)

In order to prove this inequality, we use the differential inequality

d , , .
%Heﬂ)‘tqu = (7 My, i\ — Ve M)

< 2sup(im)|le~"ulf?,
and the initial conditiorjje=**u| |;=0 = ||u|| to obtain that|e=*|| < |[e'™*||. (The
latter inequality can also be derived by taking the norm of the Trotter representation
of e~ = lim,,_, ,o[etREM/meIMAL/n]n ) Using that I\ = —T" + O(x°%) and that the
spectrum of" is bounded below b¢yx2, we arrive at (3.21). Setting = Cox?/2, we
derive from (3.21) for small:

e <e™ ™, t>0. (3.22)

e We have the following uniform bounds in> 0.a) For0< 8 < ¢
t
(t+1) / e =) (s+1)"7ds < C(L+~17P) < Cx™2728,
0

If0 < 8 <o —1ando > 1, then the r.h.s. above can be replacedlfg +~ %) <
Cr=28.
b) Forc >1,0< <o -1:

t
(t+ 1)5/ (t—s+1) 7 (s+1)Pds < C.
0

EstimationsWe use the above mentioned points and the conditie2 > /3 to estimate
rj@®||3, forj=1,....5.

t _
1) @l < / == | PV Be= 54, (0) 3 ds
0

t
< C||<A>® Pio||n /-@/ e V=9 (s + 1) ds
0
< C||<A>% Piol|ly £12P@ +t) 77, t > 0. (3.23)

In the second step, we used (3.15) and the local decay estimate (A4).

t

2) [lr2®lle < CllPol [ Hz/ e =) (s + 1) s
0

< C||Pyollp k¥ +1)7, t>0. (3.24)

t s
3) [Ira(®)ll» < O / e 0=) / (s — 7+ 1Y Pop(7)| |5 drds.
0 0
(3.25)
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We split||Py(7)||3 as

[Pyl < e |[Pboll3 +Ir(D)lla < e[| Paol 3 + [rlo(r +1)77
< OOy~ Pyolla + [r]o)( +1)77,

where we usedh(r)’e=7" < C, uniformly in~, 7 > 0. So

t
lra@®)|ln < CK> (572%| | Pool|3 + [T]T)/ e (s + 1) Pds
0

< OrY2 (k72| Piol | +[r]r) (¢ +21)°. (3.26)

t s
4) |lra@®)||n < Cms/ e_V(t_s)/ (s — 7+ 1) |<A> " 9y(7)||3 drds.
0 0
We decompose the last term in the integral as
[<A>7 a3 < |I<A>7 e Fu(0)] 3 +[|<A>"" R(T)lIn
< C(1+ 1) |<A> Piyol| + (r + 1) °[R]7.
Using this decomposition in the double-integral, we get

lra@®)| | < C (|[<A>* Pyl 6% % +[Rlrs> %) ¢ +1)°.  (3.27)

t s
5) lIrs®lle < On® [ 0 [ (s 1y S| PUE e drds
0 0
< CrY2 (k7% | Piol o +[r]r) (t+ 1) 7. (3.28)
Summing (3.23), (3.24), (3.26), (3.27) and (3.28), we find fet 0 < T

t+1°)r@)||» < Clrlrst=22 + C[R])rkt~28
+C|| Py |5 ¥4 + C||<A> Piol|p k125,
(3.29)

where the r.h.s. is independenttoin order to close the estimates, we exprdgl{in
terms of |]r. From (3.18), we get

t
|<A>"" R()l < Cn/o (t — s+ 1)~ Py(s)| | ds
< C (k22| Pijolla +[rlrr) (t+1)77, (3.30)

and thus from (3.20):R]r < Cx*=28||Pyy||% + Cr[r]r. Taking the supremum over
t € [0,T]in (3.29), and replacing}] r in (3.29) by the last estimate, we get

[r]r < Clrlrst=2" + C||Piolly % + C||<A>* Pyolly 27 (3.31)
We can now isolater] 7 in this inequality if3 < 1/2, and forx small enough. We get

[rlr < C||Piol| 14 + C||<A>* Paol|p x*2. (3.32)
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The estimate is uniform iff’, and takingl’ — oo yields
lr@®)||% < Cr*P(t+1)", (3.33)
Similarly, using ] < Cx**% in (3.30) gives
|[<A>" R(t)||x <Cx*2P@+1)7. O (3.34)

The estimates given in Remark 2 after Theorem 2.1 are immediate from (3.30) and (3.32).

4. The Mourre Estimate for Reduced Operators and Local Decay

4.1. The Mourre estimateln this section, we derive the strict Mourre estimate for the
operatorld = PHP from the Mourre estimate faf, and use the former to prove the
local decay for the operatdi. We consider perturbatiori$” of the formW = x'U,
whereU is fixed, andx’ is assumed to be sufficiently small. The main result of this
section is related to some results in [AHS]. It is given in the following

Theorem 4.1. Suppose thatl P and[Hy, A](Ho +i)~* are bounded, and thal W P,
W (Ho+14)~t and[W, A](Ho + i)~ are O(x’). Moreover, suppose that there is a neigh-
bourhoodA; of Ey # 0 such that

En,(Ho)i[Ho, Al Ea,(Ho) > 01Ex,(Ho) + K, (4.1)
wheref; > 0 and K is a compact operator. Therx > 03C(e) > 0 such that
Eny(HYi[H, A]Eay(H) > (01 — €)Eay(H), (4.2)

for any neighbourhood\; of Ey, Az C Ay, provided|Az| < C(e), andx’ < C(e). In
particular, | Az| is so small thaD ¢ As.

Proof. We divide the proofinto two steps. In Step 1, we pass from the Mourre estimate for
Hyto astrongMourre estimate foH o, in an appropriate interval,, 0 € A, C Ay. This

is done by shrinking\, aroundFEy as to make the contribution of the compact operator
K arbitrarily small. In the second step, we pass from the strong Mourre estimaig for

to one forH.

Step 1We show thave; > 03C(e1) > 0 such that
E,(Ho)i[Ho, A]Ea,(Ho) > (61 — €1)Ea,(Ho) (4.3)

for any neighbourhood, of Eg such thatA, C Az, and|Az| < Ci(er).

Let A, be an open set containinigy but not 0, andA, C A;. Applying PEa,(Ho) =
Ea,(Ho) to both sides of Eq. (4.1) and usitign, (Ho)P = Ea,(Ho)P = Ea,(Ho), we
obtain

En,(Ho)i[Ho, A1EA,(Ho) > 01E,(Ho) + Ea,(Ho)K Ea,(Ho), (4.4)

where the last term on the r.h.s. can be made arbitrarily small by shrirkirayound
Ey (Ho has no eigenvalues in a neighbourhoodtgfif Eg 7 O, thusEa,(Hp) — O
strongly; andK is compact). This shows (4.3).
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Step 2Let now A; satisfy (4.3). We show thate, > 0 3C5(e2) > 0 such that
EAa(H)Z[Ha A]EAs(H) > (91 — €1 — 62)£?A3(I7)7 (45)

for any neighbourhood s of Ey such thatAz C A,, provideds’ < Cs(e>).
We have

[H, Al = [Ho, Al +[W, A]. (4.6)
We claim
En,(H)[W, AlEn,(H) = O(x). (4.7)
To prove the last estimate, write
[W, Al = [W, Al + [PW P, A] — [PW, A] — [W P, A].
The last three commutators ax’) since|| AP|| < co and||AW P|| = O(x’). The fact
that W, AJ(H + 1)~ = O(x') follows from the assumptiori¥, A](Ho + 1)~ = O(x')
andW(Ho+4)~t=O(x). B
Let us now examing’,,(H)i[Ho, A]Ea,(H), whereAs is a neighbourhood afy,

andA3z C Aj. Leth € C§°(Ay) be such thab = 1 onAg. We haveh(H) = h(H,) +Z,
where

I=-— /(ﬁo — 2)"W(H - 2)"Ydh(z),
and since Ho, A](Ho + i)~ is bounded, and both and (H + i)Z areO(x’), we get

En(H)i[Ho, Al Ex,(H)
= En(H)h(H)i[Ho, AW(H)E,(H)
= Ex,(H)h(Ho)ilHo, AJW(Ho)Ea,(H) + O(x'). (4.8)

Using (4.3) anth?(H,) = h?(H) + O(x'), we estimate the first term on the r.h.s. of (4.8)
from below by

(61 — €1)Ea,(H)h*(Ho)Epy(H) = (61 — 1) Ea,(H) + O(x).
This together with (4.8) implies
En,(H)i[Ho, A]EA,(H) > (01 — e1) Eay(H) + O(K'). (4.9)

Multiplying (4.6) from both sides byZ,,(H) and taking into account (4.7) and (4.9)
yields the desired result (4.5). O

4.2. Local decay.

Theorem 4.2. Suppose (A3) and (4.2) holdV (Ho+i)~1|| < 1, and(Ho+i)"ad’;(P)
(Hp +i)~™ are bounded forn = 0,1 andr < n. Then there is an intervah’, Ey €
A’ C Az such that the local decay estimate (A4) holds.
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Proof. We verify first that we have the upper bound (uniformlyir):
ladPE)H +3)Y < C, k=1,... ,n. (4.10)
Expanding the multicommutator of ordergives

adPH) = ad(PHP) = > Cpyyry0d§P(P)ad? (H)ad (P (P). (4.11)

ri+ro+ra=k
Equation (4.10) follows since all the operators
ad$P(P), ad' P (H)(Ho +i) ™%, (Ho+ i)ad? (P)(Ho +i) ™,

and (Ho + i)(H +14)~! are bounded (the last fact follows frofW (Ho +4) 72| < 1).
Theorem 4.1 together with (4.10) imply, due to a result of [HSS] that

|<A>~% e~ Pyl | < const. ¢+ 1)"*||<A> Pg||3, t > 0.

The constant depends &h (and) only through||ad®™ (H)(H +i)~Y||, k= 1,... ,n.
O

5. Proof of Theorem 2.3

e We show (Al), i.e]| <A> P|| < oo. From|| <A>% P|| < C(1+||A*P]||), we
see that it is enough to show that P is bounded, for some integer> «. Now

A= (;(9«“ ptp- $)> =>_oxlep)" 1)
k=0

But (z - p)*P is bounded by (2.12); < n: in fact, (¢ - p)* is a sum of terms of the
form 2™p™, wherem = (mq, ... ,m,) are multi-indices withm| = Z;’zl m; < k,
2™ =g 2l andp™ = (—i)‘m|8;’;1 -0, withy = dim X.

e (A2) follows directly fromW = x'U and (2.11).

e We show that (A3) is satisfied. From

adP(H) = (=20 p? +i*(z - V)PV +iF(z - V)W,

W = #'U and (S2), itis clear thatd')(H) is H-bounded, uniformly in’.
e We show now the local decay estimate (A4). Equation (2.11) shows4Hapr =
O(x"), and (S2)(ii) withk: = 0, 1 gives thallV (Ho+i) L and [V, A](Ho+i)~* areO(x’).
Boundedness afi P follows from || <A>® P|| < oo, which we have shown above,
and [Ho, A](Hg + 1)1 is bounded by (S2)(i) wittk = 1. This together with (S3) shows
that the conditions of Theorem 4.1 are met. Due to Theorem 4.2, it is then enough to
check that Ho + i)™ ad")(P)(Ho + i)~™ is bounded for < n, m = 0,1. We do this
now.

Letm = 0. Clearlyad?)(P) = P is bounded. I > 1, thenad((P) = ad{))  (P).
This multi-commutator is a sum of terms of the form-(p)'P(z - p)™, 1 +m = r.
It is thus enough to show thatp' Pp™z™ is bounded|l| + |m| < r, 7 < n. This is
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guaranteed by (2.12). We conclude thdﬁ)(P) is bounded (and does not depend on
K').
Letm = 1. We write

(Ho + )ad)(P)(Ho + i) = ad (P) + [Ho, adi’;)(P)] (Ho+i)~L.

Forr = 0, the commutator is zero. Fer> 0, the general term in the commutator is of
the form

Ho(z - p)' P(z - p)™ — (x - p)' P(x - p)" Ho.
BecauseH is p?-bounded, it is enough to show th&{(z - p)' P(x - p)™ is bounded for
anyl,m, ! +m < n. This is again ensured by (2.12).
e (Ab5) follows immediately from (S4). O

6. Proof of Theorem 2.5

The proof of Theorem 2.5 is analogous to the proof of Theorem 2.1 for a non-degenerate
eigenvaluefy. In the quasiclassical case however, we must keep track of the parameter
h. The delicate point in the proof of Theorem 2.5 is to show local decay. The latter is
deduced from the quasiclassical Mourre estimate (cf. [G, Gr, HN]). This estimate is of
an independent interest. We begin with it.

6.1. The quasiclassical Mourre estimate.

Theorem 6.1. Assume the non-trapping Condition (T3). Theen> 0, thereisaC. > 0
and a neighbourhooa\; of Ey/k (with |A;| independent ofi) such that forh < C.,
we have

Enm(ﬁ)%[fi AlEpa,(H) > (0 — €)Ena, (H). (6.1)

Proof. We write [H, A] = P[H, A]P + PH[P, A] + [P, A]JHP. SincePA and AP are
bounded, an®HP = PW P = O(x), we getP[H, A]P = P[H, A]JP + O(x). Let A1 be

an interval containindzy/ %, and of fixed length as specified in Proposition 6.2(i) below,
and such that @ hA;. Then we havelya, (H) = Epa,(H)P, and hence

Enau () U, AV By (1) = Enetras (1)1 UH, Vs, () + ). (6.2

Now %[H, Al =2(H — Ep) +2(Eg — V(z)) —x - VV (z), so withEy > V(0), it follows
that

Ena, () T, A B, ()
> B (M) (2(V(0) - V(@) — 2+ V(@) Era, M + 0. (63)

Let A/ be a bounded neighbourhood ofd@ R? on whichV (z) = Vy(z) (see (ii) in
Paragraph 2.3.2). L&V = N\./\O/be the boundary o¥/". We putd; = mingcan (V (x) —
V(0)), andd, = min{éy,6}/2, wheres is given in (T3). The set®§*!, N andQ(;C2 =
{x € R4V () > 6.} coverR?.
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We introduce aC*>°-decomposition of unity: 1 =¢1(x) + x2(z) + x3(z), such that
suppx1 C N, suppxa C Q§°, suppxs C Qg’;. We estimate the r.h.s. of (6.3) on the
supports ofyy, x2 andxs. We have

X3(2) Ena, (H) = O(e*/"), (6.4)

for somep > 0 (see [Gr], Lemma 6). On the support pf we haveV (x) = Vo(x),
suggesting thag1 Era, (H) is close toy1Era,(Ho), which in turn is zero ifhA1 does
not contain any eigenvalues Af,. We have in fact

Proposition 6.2. There is a neighbourhoa@A; of Ey, such thatA,| is independent of
h (|A4] depends only on the second derivative¥ adt the origin), and such that

() hAiNo(Ho) ={Eo},
(i) x1Ena,(H) = O(hY?).
The proof is given below. Putting 1 xi(x) + x2(x) + x3(z) in front of the last

factor E,(H) in the r.h.s. of (6.3), we then get, using (6.4), Proposition 6.2 and the
non-trapping Condition (T3):

By (1) £, 4] i, ()
> Biaa () 20V (0) = V(@) — = - TV (@) (a(a) + Xo(a)) B, () + O(1)
> Epa,(H) (0x2(@) + O(0/%) Ena,(H) + O(1)

> Epa, () (9 + 0(h1/2)) Enn,(H). O (6.5)

Proof of Proposition 6.2 (i) is a simple consequence of the harmonic approximation.
In order to prove (ii), we introduce the unitary transformatioon L?(R?) defined

by
UY)(x) = K p(h %), ) € LX(RY). (6.6)

Itis easily seen thd¢ HU~1 = hH',U Hod~* = hH}, where the rescaled Hamiltonians
are given byH’ = —A + i~V (h'/2z), and Hy = —A + i~ 1Vp(hY/2z). The spectra
are related as(H) = ho(H'), ando(Ho) = ho(H}). For a functiong of H, we have
Ug(HUL = g(hH'). We letH' = P'H'P’, whereP’ =1 — P', P’ = UPU~?, and
]76 = ﬁH()ﬁ

Pick nowg € Cg§° such thaty = 1 on A1, andsuppg N o(Hy) = {Eo/h} (this is
possible by (i)). Since(H() = 0, we have

\a(B2)g (1) = xa (/%) (") — () )
= xalt/%) [ (G~ ) P LW AP - 2) g (6.7)
= —x1(h?z) / (HYy — z)_l%W(hl/zx)ﬁ(IT — 2)7Ydg + O(h k).

In the last step, we used

1 1
P’ﬁW(hl/ 2z) = ﬁupwu—l = O(h k). (6.8)
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Ther.h.s. of (6.7) is now shown to be small by commuiiai'/ 2z) through the resolvent
(H} — 2)~* to the right, and using(h/22)W (h*/?x) = 0:

x1(hY?x)(H) — z)_1%W(hl/2m)
= (Hy— )7t [-A, Xl(hl/zx)} (H, — z)’l%W(hl/zz)
= 2R} — )V (V)2 (Y — )W ()
# B — 2) A 20) (G — 2) 5 W (), (6.9)
Notice that||(Hj — z)~1V|| < C|Im z|~1, uniformly in A, and that

(H, — z)’1%W(h1/2z)ﬁ(IT — )t =(Hy - 2) - H - 2T+ O(h k)
=O(|Im 2|~ + O(h~ k).
We then get from (6.7) and (6.9):
x1(hY2x)g(H') = O(hY/?). (6.10)

Notice that we were able to uge Im z|~*dg < C, uniformly in &, since the size of the
support of the functior is independent ofi. From (6.10), it follows that

U a (B 22)g(HU = xid " g(HWU = x19(H /h) = O(RY?),  (6.11)

and (ii) of Proposition 6.2 is proved by multiplying the last equatiorfy, (H). O

6.2. Local decay in the quasiclassical case.

Theorem 6.3. Suppose that the Mourre estimate (6.1) holds, and that Conditions (ii)
and (T1) of Paragraph 2.3.2 are satisfied. Then there is an intetwat A; such that
the local decay estimate holds:

||l<A>— e~ Ht/hg,  (H)Po|lo < Ch™N <t>~ ||<A>* Poll,, (6.12)
whereN is an integer depending am, n, andC depends onA’|, but not on.

Proof. Via the unitary transformatiotd (introduced in the previous paragraph), (6.12)
is equivalent to

|<A>— e 't (HNP ||, < ChN <t>" ||<A>* P'g||,.  (6.13)
Notice tha/ commutes withA. From (6.1), we get by conjugating wit:
En(H)i[H', A|Ea,(H') > (0 — €)Ea,(H'). (6.14)
We have also
ladP (gar @] < Cxh~?. (6.15)

Estimate (6.15) is obtained by using the representation (A.1) and expanding the mul-
ticommutator (as in the proof of Lemma A.1, see (A.12)). From (6.14) and (6.15), we
get (6.13) following [HSS] and keeping track of the dependenckion(6.15). [



570 M. Merkli, I. M. Sigal

6.3. Proof of Theorem 2.5Remarks 2 and 3 after Conditions (T) in Paragraph 2.3.2
show that (A1) and (A2) are satisfied. Clearly, (A3) is also true by (T1) and Condition
(i); in fact, ad® (H)(H +i)~1 = O(h¥). (A4) holds modulo the factdr~ (see Theorem
6.3), and (A5) holds modulé? (see (T4)). Theorem 2.5 follows proceeding as in the
proof of Theorem 2.1, and keeping trackiof O

A. Appendix

We first present an operator calculus which we then apply to find some norm-estimates
on the operatoB introduced in Proposition 3.1 that were used at various places in this
work. In the subsequent sections, we give the proofs of Propositions 3.1-3.3.

A.1. Operator calculus.The operator calculus presented below is based on a formula
due to Helffer and Qjstrand [HeS;j] with estimates of the remainders given in [IS, HS2]
(see also [D]). We follow [HS2]. Le#l be a self-adjoint operator. For a complex-valued

g € C§°(R), we have the representation

o(4) = / (A — 2)"1dj(2). (A1)

where the integral is ovet, g(z) is an almost analytic extension gfto the complex
plane, and

dg(z) = %(830 +10y)g(z)dxdy. (A.2)

The functiong{z) has compact support, and satisfies the estimate

[l 7dgi) < 0. p> o0 (A3)

Consequently, the integral (A.1) converges absolutely in norm.

We need also estimates on commutators |iké), f(A)], where H, A are self-
adjoint operatorsh € Cg° and f € C*°. If the muIticommutatorsadfff)(H), k =
1,... ,n are H—bounded, and satisfies the condition given below, then we have the
following expansion:

n—1
(), F(AN = 3 = FO(A)ad D h () + R (A4)
k=1

where
R, = / (A = 2)""adB(W(H))(A - 2)"*df ().

We then have

n+2

|1 Rnl| < ColladP((E)|D / <a>Fn=b | F0()|da, (A.5)
k=0

where<z>= (1 +z?)¥/2. The condition onf is that the integrals in (A.5) exist. For
details, see [HS2].
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A.2. Proof of Proposition 3.1We want to show thatg, (H)Pgx (H)|| < 1 for smallx,
thenB is given by the norm-converging Neumann series

oo

B = (1 — gy (H)Poa(H) ™ =Y [0 (H)Pga(H)]" . (A.6)
n=0

Sincegs () commutes with, andg,, g = 0, we geg, ()Pgs (H) = g, E)P(gs (H)
an(H)). Using the second resolvent identity gives
Ploa(H) — s () = ~P [0 =2 = (H - ) Haa(2)
= / (H — 2)"'PWP(H — 2) Y (2). (A7)

With ||[WP|| < k, we get
KR

7 —-1p -1

Now |Im(z)| =2 is integrable with respect )3 |(z), see (A.3). The integral in (A.7) is
thus bounded by C(A), where

o(a) = / 1M )| ~2d)7a (2),

and this shows existence 8ffor k < 1/C(A). Moreover

IBIl <) s"C(A)" = (1—kC(A)

n=0
This completes the proof of the proposition.
A.3. Norm estimates on the operatBr
LemmaA.l. We havevg € H:

|<A>"% Bo||ln < C||[<A>" ¢l (A.8)
|<A>"% B'dllp < Crl|<A>" ¢l , (A.9)

where the constants are independent dbr small .
Proof. Due to (A.6) it is enough to show that

| <A>~% gy, (H)Pga(H) <A>® || < Ck. (A.10)
Due to (A.7) andj,. (H)ga(H) = 0, in order to show (A.10), it is enough to show

H / <A>TY(H — 2) " YPWP(H — 2) Yga(H) <A> dja(2)|| < Ck. (A.11)

We have||W P|| < k. Introduce<A>%<A>~% betweenP and ( — z)~1in (A.11)
and notice that? < A>“ is bounded by Condition (Al). The norm of the integrand
in (A.11) is then bounded by
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k| Im(2)| 7| <A>7 (H — 2) " tga(H) <A>* ||
<k [ImE)|([Im2)| 1+ || <A> [(H — 2) tga(H), <A>T|]) .

To estimate the commutator in the last expression, noticevthat R, z € R, z —
(x — 2)"Yga(z) € C§°(A). Hence we can apply expansion (A.4)-(A.5) wittr) =
(z — 2)Yga(z), and f(z) =<z >*. Estimate (A.5) implie§|R,,|| < C|lad((H —
2)"tga(H))||. Now

ad®(H — 2)"Yga(H))
- / ad® ((H — 2)"YH — ¢)™Hdja(0)

=Y G / ad O ((H — 2 adS((H — O da(0),

ritro=k
for some number€’,, ,,. Therefore
eaP e — 2 2gatim)|
<C 3 adH -2 [ ladPW - O Hdasle) 412
ri+ro=k
In order to estimate (A.12) further, observe that

k+1
ladf(H — 2™ <Y [Im(z)| (A.13)

j=2
uniformly in x for smallx. The integral in (A.12) is thus bounded by

k+1

¢ [ 32 mQI a0 < o<,
j=2

uniformly in x, for smallx. So we get

k+1

lad((H — 2) " ga(HD)|| < C > [Im(2)] 7,

J=2

and hence the L.h.s. of (A.12) is indeed bounded by
Cr [ (Im@[ 2+ mE)]"2) diaw|(:) < . (n19)

uniformly in «, for smallx. This shows (A.8). (A.9) is then readily obtained from the
factthatB’ =g,.(H)Pga(H)B and (A.10). O

A.4. Proof of Proposition 3.2For ¢ € D(<A>%), e ] 0,t > 0 fixed, we show that
O (t) =<A>"¢ eiiﬁt(ﬁ —w—i€e) P

is a Cauchy-net ifi{. We notice that (foe > 0)
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(H—w—ie)t=i / e~ iUH—w=igs g (A.15)
0
and so we get, using the first resolvent identity:
(H-w—ie)t—(H—-w—ie)?
= —i(e — €/) /DO e—i(ﬁ—w—ie)sds /oo e—i(ﬁ—w—ie’)ada.
0 0
Therefore
pe(t) — e ()]
oo (oo} , =
<le—¢| / oo / || < A>T P I dods
0 0

oo o0 —
<le— e'|/ ds/ dr||<A>"% e Pyg| |4
0 t+s

<le— e'|/ ds/ dr(t + 1)7*C||<A>" ¢||, (A.16)
0 s

where we used the local decay (2.1). Since 2, the double integral in (A.16) is finite,
so we get
¢e(®) — ¢ Ol < Cle —€'[[|<A>Y I3, VE =0,

which shows thab, is a Cauchy-net, and (i) is proved.

To prove (i), we remark that from (A.16), we have that the ligitt) = lim . o ¢e (£)
exists, andp. — ¢o uniformly in t. So¢g is continuous since the.’s are.

To prove (iii), remark thatt(> 0, ¢ > 0):

efiﬁt(ﬁ —w— Z.6)71 - iefiwteet/ efi(ﬁfwfie)sds’
t
so that we get
[|<A>"¢ eiiﬁt(ﬁ —w—ie) P |n

o0 —
< ed/ e ||<A>" e 5 Py| |3, ds
¢

< Cll<as® dllu [ (s+1yds
< O+ 1 <A bl
This completes the proof of the proposition. ]
A.5. Proof of Proposition 3.3The definition of) is (see the sentence after (3.13))
A= Eo+PWP+PWB'P— PW(H — Eg — i0) *P,WP. (A.17)
We analyze firsPW B’ P. SinceB’ = g,,(H)Pgx(H) + O(k?), we have

PWB'P = PWg,,(H)Pgs(H)P + O(k5). (A.18)
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Using g, (H)ga(H) = 0, we get
Ga (H)Pga(H) = G (H)P(ga(H) — ga(H))
= gy (VP [~ WP(H ~ ) (o),

Since { — 2)71 = (Ho — 2)7Y (L — W(H — 2)~Y) and PW andW P are O(k), we
deduce that

Gar(H)Pga(H) = =G5 (H)P / (H — 2) "X (Eo — 2) " dga(z)WP + (’)(HZ)(A 19

Now
H-2) " EBo—2)t=—H-E) " (H-2""—(Eo—2)"),

and therefore
Ga (H)Pgr(H) = g (H)P(H — Eo) ™ (9a(H) — ga(Eo)) W P + O(x?)
= —gu(H)P(H — Eo) *W P + O(x?).
Combining this relation with (A.18), we find
PWB'P = —-PWg,(H)H — Eo) *PWP +O(x3). (A.20)

Notice that the term of order two it of P1W B’ P is self-adjoint.
Let us now examine®W (H — Ey — i0)~*P,W P, which will give the non-zero
anti-self-adjoint contribution of order two in,
PW(H — Eo —i0)"1P,WP
= PW(H — Eo — i0)"*PWP — PWg, (H)H — Eo) " *PWP. (A.21)
Observe that the first term on the r.h.s. exists, because of Proposition 3.2 (and the

assumption that A>> W P is bounded). The second term exists siflgeZ supp(gy,)-
Hence it follows from (A.17), (A.20) and (A.21) that

A= Eo+PWP — PW(H — Ey —i0)"'PWP + O(x3). (A.22)

Notice that since®W (H — Eo — i)~ XPW P converges strongly as| 0, then so does
its adjointPW (H — Eq +i€)~LPW P. The proof is now complete if one observes that
the principal value and the delta-function have the representations:

PV.(H — Ep) 1= % IiT) ((H — Eo—ie)  +(H — Eg +ie) ) (A.23)
and
8(H — Eo) = i lim ((H — Eo—ie) ™ —(H — Eo+ie)™Y). O (A.24)
271 €l0

Remark.To show||T'|| < Ck? (see (2.3)), notice thatPW (H — Eo+i0) 1P;W P|| =
O(x?). This is shown to hold using Proposition 3.2(ii) with= 0, and the assumption
PW <A>%= O(k).
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