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Abstract. We describe qualitative behaviour of solutions of the Gross-Pitaevskii
equation in 2D in terms of motion of vortices and radiation. To this end we introduce
the notion of the intervortex energy. We develop a rather general adiabatic theory
of motion of well separated vortices and present the method of effective action which
gives a fairly straightforward justification of this theory. Finally we mention briefly
two special situations where we are able to obtain rather detailed picture of the
vortex dynamics. Our approach is rather general and is applicable to a wide class of
evolution nonlinear equation which exhibit localized, stable static solutions. It yields
description of general time-dependent solutions in terms of dynamics of those static

solutions “glued” together.

Introduction

Often solutions of nonlinear equations can be described in terms of dynamics of stable,
localized, particle-like structures and radiation. The localized of structures mentioned
above appear as “glued” together special static solutions. Our goal is to find a general
description of this phenomenon. We illustrate our approach on a time-dependent version
of the Ginzburg-Landau equation:
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(R™ is assumed to possess a complex structure.) This equation comes up in condensed
matter physics and nonlinear optics and is also known as the Gross-Pitaevskii or Ginzburg-
Pitaevskii equation.

There is also a host of related equations to which our techniques are applicable:

SO A (e - 1) (HE)

SO av (U - 1) (WE)

Cahn-Hilliard, Allen-Cahn, Swift-Hohenberg, etc.
In what follows, I outline a general picture, using a wide brushstrock. In the supple-

ment, [ present our results on standing localized solutions — optical solitons.

Topology of v» and localized structures

First we point out the connection between the topology of the function ¢ (the order
parameter) and the type of localized structure involved:
¢ : R+ RY <= vortices/defects, monopoles, instantons, ¢ : R3T! - R? <=

line vortices, (cosmic)strings, ¢ : R®**! - R <= kinks, domain walls.

Static solutions

The localized objects I refered to, are solutions of the corresponding stationary equa-

tion - in our case, the proper Ginzburg-Landau equation
CAY (6P - 1) =0. (GLE)

Thus we want to classify solutions of this equation. For simplicity we assume in what

follows that

Topological classification

With each 1 : R? — R? we associate the map

h_ i d-1 _, gd—1

¥]lzl=r
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Using a standard definition of the degree (see e.g. [52]), we set
degtp :=degd) € Z |

All solutions to the (GLE) are classified according to this topological invariant. This, in
particular, leads to the topological conservation law for the corresponding time-dependent

equations.

Group-theoretical classification

Now we want to isolate symmetric solutions. The symmetry group of (GLE) is
Gsym = O(d) x T(d) x O(d)

(the group of rigid motions of the underlying physical space times the gauge group). The

most symmetric solutions are

(a) translationally invariant solutions tg:

g = constant unit vector (a ground state)

(b) “spherically symmetric” solutions tg:

3 homomorphism p : SO(d) — SO(d) s.t.

p(g)o(g™"z) = vo(z) Vge O(d).

The homotopy class of p’s (preserving a fixed vector if d > 3) determines deg .
Depending on the dimension d spherically symmetric solutions have the following

names:
d = 2 = vortices

d = 3 = monopoles

d = 4 = instantons

Depending on the degree we have e.g. for d = 2
deg o = +1 = vortex/antivortex
deg g = n = n-vortex ,

etc.



Existence and stability

Let Ly, be the linearized operator for (GLE) at a solution ty. We use the following
definition of the (linearized) stability:
Definition: A solution g is said to be stable iff

specLy,, C R+ and NullLy, = gsym?0o -

Here geym in the Lie algebra of the group Gsym. Note that goymto € NullL,, always.

Theorem.

(a) Vortices: Vn € Z 3 a unique (modulo symmetry tranformations) vortex; |n| < 1
vortices are stable and |n| > 1, unstable

(b) monopoles, etc.: spherically symmetric solutions exist only for n = +1, they are

unique and stable.

References:

(a) Existence: Hervé and Hervé [28], Chen, Elliott and Qui [16], Fife and Peletier [19],
Ovchinnikov and Sigal [42].
Stability: Lieb and Loss [34] and Mironescu [37] for disc and |n| < 1. Ovchinnikov
and Sigal [42] for R? and all n.

(b) S. Gustafson [25].
The part (a) of the above theorem was generalized for the order parameter ¢ coupled

to a magnetic field (i.e. to magnetic or Abrikosov vortices) in [26].

From now on we set

d=m=2.

Rough idea of the proof of the stability resulty [42]

The outline below, though formally incorrect, gives a fairly good impression of our
approach. Let ¢y be the 1-vortex. Since it breaks translation symmetry (¢o(x) # ¥o(x +
BV h £0),

0z; %o are zero modes of Ly, ,
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the linearized operator. (In fact 0y, ¢ and 0,,vg are “proportional” to each other, so we
can consider just 0y, ¢.)

We find a positivity (open) cone I' C L*(R? R?) s.t.
(i) 0w €l
(ii) exp(—tLy,):T — T (i.e. it is positively improving w.r.t. T).
Then the Perron-Frobenius theory implies that o(Ly,) C [0, 00) and 0 is a non-degenerate
eigenvalue.

The reason that the argument above is incorrect is that the property (ii) does not
quite hold. For |n| < 1, this hole can be patched up problem can be circumvented, while

for |n| > 1, not. In the latter case we construct a test function ¢ s.t.

(€, Ly (&) <0,

which shows that Ly, has a negative eigenvalue. d

Renormalized Energy

(GLE) is the equation for critical points of the celebrated Ginzburg-Landau functional

1 1
&) = 5 [V + S0P - D)
There 1s one problem with this functional though

Theorem. Let ¢ be a C' vector field on R? s.t. || — 1 as |¢| — co. If degt) # 0, then
E(1) = .

Thus if we want to use the variational calculus and in general the notion of energy
for vortices we have to modify £(¢)). We introduce the renormalized energy functional as
follows

de 2
Euun() = 5 [0V0F = Bk Sup — 17y

where r = |z| and x is a smooth cut-off function, =0 for r <1 and =1 for r > 2.
In order to introduce our next key notion, we need the following notation and defini-
tion. Let ¢ = (z,n), where
z=(21,...,2), z; € R? |

n=(ny,...,ng), n; €7Z.
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Definition: @ has a configuration c, conf b = ¢, iff ¢ has zeros only at z; ... z; with local
indices nq,...,ng.

Now we introduce intervorter enerqy as
E(c) :=inf{&en(¢)|confy = c} . (%)

We argue ([43]) that

(*) has a minimizer

+—— V,E(c)=0
and show that for intervortex dist > 1,

V.E(c) #0 always.

Hence for large intervortex distances there are no stationary vorter configurations.

For intervortex distances of order O(1) stationary configuration do exist, e.g. (see
[45]) (see Fig. 1).
Pinning

Introduce impurities in order to nail the vortices down:
K )\
E(1) = Erenl) + D0 7 / 55, 107 .
j=1

where A = (A1,...,A) and §(z) = ﬁ(g(h: — bl —rg), (see Fig. 2).

We argue (see [43]) that if \; > const|V.; E(c)|Vj, then £x(¢) has a minimizer in the
class {conf?) = c}.

Asymptotics of F(c)

Let R(c) be the intervortex distance. We show (see [43]) that as R(c) — oo,
K
E(c)=) En; +H(c)+ O(R(c)™") , (AS)
=1

where E,, is the (proper) energy of the n-vortex and H(c) is the Kirchhoff-Onsager Hamil-

tonilan:

H(c) = —WZninjln|zi — zj] .
i#y



The idea of a demonstration of (AS) is as follows. The upper bound, E(c) <r.h.s.(AS),
is obtained by choosing an appropriate test function and performing a rather delicate
many-body geometrical analysis. To prove the lower bound, E(c) > r.h.s.(AS), we use the

pinning energy functional with A = O(R(c)~'). This gives
E(c) > inf{&x(¥)|confy) = e} — CR(c)™" .

The minimization problem on the r.h.s. has a minimizer. The latter satisfies the Euler-

Lagrange equation
NG ([ =1 = =60

This equation allows us to produce estimates on the minimizer in question which show

that it is of the same form as the aforementioned test function and therefore
inf{€x(¢¥)|confy = ¢} = r.h.s. (AS) .

The last two relations produce the desired lower bound which, together with the upper
bound mentioned above, yields (AS).
An expansion related to (AS) is derived in [7].

Now we proceed to dynamic properties of vortices.

Topological solitons

The Schrodinger equation is invariant under the Galilean group. In particular

if ¥o(x) is a static solution, then

Paw(z,t) 1= @i GTVmTV 0y (2 pt) (TS)

solves (SE). (TS) is a topological soliton or a moving solitary wave. (There is also a
related topological soliton of the form elaesa — Z—21/)0 (1 /1— 1—2(1: - 'vt)> .) However,
¥q,»(,t) has a phase which grows at infinity and therefore it is not in the class of functions

we consider.



Asymptotic stability of vortices

Problem: For (HE), (WE) or (SE) consider solutions with initial conditions close to the
stationary vortex (n = 1). Show that the global solutions exist and converge as t — +o0o
to a vortex (centered possibly at a different point).

The only known results are for the heat equation with radially symmetric initial con-
ditions: [24] and [58].

For the Schrodinger case the problem is completely open.

We expect that if ¢(x,t) is a solution to (SE) with an initial condition close to the

vortex solution tg, then there are a(t) and v(t) s.t.

V(x,t) = Yo(s),ue) + dispersive wave
and

a(t) — ax and v(t) = vy

as t — +00, i.e. Gsymto is a stable manifold for the Schrédinger dynamics (see Fig. 3).

(Note that vy = 0 if the phase of the initial condition is bounded.) In the context of

the standard nonlinear Schrodinger equation (i.e. || — 0 as |#| — oc), such results were

obtained by Soffer and Weinstein [54] and [55] and Buslaev and Perel’'man [12].

Break up and creation of vortices

We have ([47]) the following two results: (a) description of the dynamics of vortex
break-up and (b) proof that there is no energy gap for vortex-pair creation. The second re-
sult shows that there are topological fluctuations of the vacuum and around single vortices

(see Fig. 4).

Multivortex dynamics

Problem: Counsider (SE) with an initial condition corresponding to several vortices at
large distances from each other. Describe the dynamics of the vortex centers corresponding

to the solution.



Nonlinear adiabatic theory

Let v be a solution of (SE) with an initial condition of a configuration ¢ and low
energy, say of order E(c)+ O(1). To describe this solution, we proceed as follows (in what
follows n = (nq,...,nk) is fixed and is not displayed in the notation):

(i) Pick a “minimizer”, v of Eren(¥) in {confy) = ¢}, ¢ = (z,n).
(ii) Define the intervortex energy E(z) := £(1¢b,) and write the Hamiltonian equation

z = JVE(z), (%)

where J is a “symplectic” matrix on @ R*:
=1

J = diag (Winj(_(l) é)) |

(i) Insert the solution, z(t), of the Hamiltonian system above with appropriate initial
conditions into 9,. This gives the adiabatic order parameter as ¥, ).

(iv) We expect that the solution ¢ is of the form

77[} = eia(t)lbz(t) _I_ ¢disp ,

where a(t) is some slowly varying real function of ¢ and tqisp is a radiation to oo, the

latter of the order O(R(z)_Q).

Effective Action Method

Now we explain the origin of the nonlinear adiabatic theory (see [44] for more details).

Let S(v) be the action functional for Eqn (SE):

S(w) = /{ _/%Im(¢$)d2x+gren(¢)}dt,

where &en(?) is the renormalized Ginzburg-Landau functional introduced above. First we
find an approximate minimizer, ¢,, of Een(¢)) under the constraint that the vortices are
fixed at positions z1,..., 2k, (21,...,2k) = z. Next, we allow z to depend on time and plug

¥y(t) into S(1). The resulting action functional,

Seﬁ(z) = S(¢z)7
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describes the dynamics of the vortex centers in the leading approximation; it is equal

modulo f O(ln R(z) - R(z)_2)dt to the action functional

k

Svort(z) = /{—gZZj/\z‘j—E(z)}dt,

J=1
whose critical points satisfy Eqn ().
To go beyond this theory we write ©» = ¥, + a, where « is supposed to be a small

fluctuation field around v, and expand S(?) in « up to the second order. Critical points

of the resulting functional satisfy the system of coupled equations
Oz Ser(z2) = —VzRe/H%S(dJZ) ()

S"(g)a = —%S(l/)z) \ (% s )

where 0. stands for the variational derivative w.r. to ¢ and S”(¢) is the Hessian of S at
¥, and where we dropped the higher order term Vz%Ref [@S"(¢,)a. We demonstrate
that provided z satisfies (*), one can perturb ¢, slightly in such a way that Eqn (& * *)
has a solution of the order @« = O(R(z)™!'), provided ¢ < a? for some p > 0. To this
end we decompose the space R? into several regions determined by the configurations z
and estimate Eqn (% * %) separately in each region. We call this method, the method of
geometric solvability.

Finally, we observe that Eqns (#x)-(* * %) stripped of inessential terms read
z=JV,E(z) — /jgvchod% , (CEa)

(07 —2A)x = —¢o , (CED)

where ¢o(x) = Zle n;0(x — z;) and y = phase of a. Here 6(z) is the polar angle of
x € R% This systems represents finite dimensional Hamiltonian equations for the vortex

centers z coupled to the wave equation for the phase fluctuation y.

Special case: Two simple vortices

An initial condition for (SE): two simple vortices at the distance R from each other.
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Two vortices of the same charge: the vortices rotate around each other with the frequency
w = % (see Fig. 5) and radiate at the same time, so that the distance between them

grows as

R(t) = (3xt)s
modulo lower order terms.

Two vortices of opposite charges: there i1s a critical distance R, s.t. for R > R, there
exists a travelling wave solution corresponding to the vortices moving parallel to each other
(see Fig. 6) while for R < R.,, the vortices, as they move parallel to each other, emit a

shock wave (Cherenkov radiation) and eventually collapse onto each other (see Fig. 6).

History. The Hamiltonian dynamics of vortices was first suggested by Onsager [40] and
then elaborated by Gross [23] and Cheswick and Morrison [17] on the basis of analogy with

the motion of an incompressible fluid. Indeed u = —V(arg ) satisfies the Euler equation

= (u-V)u+Vp,

where p = % — [¥|? + 1. Tt was derived using multiscale expansion by Neu [39] and using

the nonlinear adiabatic theory by Ovchinnikov and Sigal [44]. The rigorous proof that the
vortices indeed are well defined for “low energy” solutions ¢ and that their centers are
governed by the Hamiltonian system mentioned was given by Lin and Xin [35].

The radiation phenomena was found in [44] and [46], where the coupled equations for
the vortex motion and radiation, Eqns (CE), were derived.

The special case of two vortices of the same charge was analyzed by Ovchinnikov and
Sigal [46]. The existence of a solitary wave for two vortices of opposite charge at a large
distance from each other was predicted by Jones and Roberts [32] (see also [29], [31], [33]
and [49] and references therein) and was rigorously proven by Bethuel and Saut [8]. The
appearance of the shock wave at small distances was suggested by Ovchinnikov and Sigal

[46).

Related problems:

(a) Magnetic vortices: @ coupled to the magnetic (or, in general, gauge) field.
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(b) Quantized vortices.
Here one would like to describe dynamics of quantized vortices. In particular, an
important problem is that of metastable states due to tunneling through a poten-
tial barrier. The probability of decay due to tunneling and its dependence on the

temperature were computed in the quasiclassical regime in [41].

(c¢) Vortices in random potentials and at finite temperatures.

Related papers:

A systematic approach to variational problems with topological constraints was pre-
pared in [20]. Dynamics of localized objects for Cahn-Hilliard and Allen-Cahn equations
was analyzed in [1], [5], [9], [13] and [57]. The Ginzburg-Landau equation coupled to the
Young-Mills field was considered in [4] and [56].

Dynamics of line vortices was investigated in [50].

The wealth of information about static vortices can be found in [7] and [50] with recent

results due to Chanillo and Kiesling [15]) and Mironescu [38].

Conclusion

In this talk we described topological and group-theoretical classification of localized
structures for evolution equations of the Ginzburg-Landau type. These structures are
stable, “spherically-symmetric”, static solutions. In order to describe the dynamics of
several such structures, we introduced the notion of the interstructure energy and developed
a general adiabatic theory (similar to the Born-Oppenheimer theory for molecules). This
theory is justified by the technique of effective action functional. Finally, we considered

two examples where the general theory is applied.
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Supplement: Optical Solitons

Consider the problem of propagation of electro-magnetic waves in a nonlinear medium.

The principle of minimal action for the action functional

— ]_ — —
S() =5 [ [IHUER )~ BRI a
(in the Coulomb gauge) gives the equations
d?(c-E) = AE ,
of
(| E[?)
Counsider the simplest case described in Figure 9

where ¢ = — ¢(|E|?, z) is a dielectric constant.

Problem:

Find the transmission coefficient, |T|?, as a function of an amplitude, A, of the incident

wave.

Important results on this problem were derived in [1], [2], [3], [4], [5], [6], [9] and [12],
(see [7] and [8] for reviews). In [10] we introduce the variational principle above and obtain
analytically the following picture, which was suggested in the papers mentioned above (see
Fig. 10).

Moreover, we derive the following estimate for the number of solitons at a given amplitude
A for p|AJ® large:

# solutions = Q‘L%TlrkuAP - L,

where k is the wave vector of the incident wave.
This picture depends crucially on the fact that the linear problem has a series of

resonances at the following complex values, k of |E |:

mm i 1+41
k:n-L_n-Llnl—%’m_o’il"”'
The linear theory gives
- Tm ;
El=— = |T""?=1
A= )
- 7T 1 ; 2
k|l =— — T ? = ~ 0.
k[ =7 m+35)=IT"F =5
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The nonlinearity leads to an effective wave vector which, depending on A, takes a discrete
set of values, some of which are on the resonances and some off; i.e. some correspond to a
transparent medium and some to almost opaque.

The resonance structure above plays a key role also in our stability analysis.
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Fig. 4. Break up and recombination of vortices
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n is the refractive index (n > 1).

Fig. 9. Passing of a wave through a nonlinear medium
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