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Abstract
In this paper we present an informal review of our recent work [5-8] whose goal is to
develop a mathematical theory of the physical phenomenon of emission and absorption of

radiation by systems of non-relativistic matter such as atoms and molecules.

Introduction

In this paper we outline our recent work [5-8] on mathematical theory of emission
and absorption of electromagnetic radiation by systems of non-relativistic matter such as
atoms and molecules. Related results but for more restrictive models were obtained in
[2-4, 16, 21-22, 26-31, 34, 41]. Moreover, these works, except for [2-4], which consider an
explicitly solvable model of harmonic oscillator, use explicitly or effectively a fixed infrared
cut-off and coupling constrants depending on this cut-off.

In our paper we use three distinct type of techniques: methods of constructive field
theory, a method of positive commutators and a renormalization group technique. The
first one is an adaption to the new situation of well known methods (see e.g. [18,19,16],

the second one is an extention to the field-theoretical context of some ideas originating in
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the theory of Schrodinger operators (see [33,35,15]). While [6] was in preparation more
advanced commutator techniques appeared in [22,9]. The third, renormalization group
technique is new. Its central characteristic is that the renormalization group transformation
is defined directly, without intermiditaries such as (euclidian) propagators, on the equation
in question.

We work with the units in which mq = 1, & = 1 and ¢ = 1, so that the electron

charge, e, is a dimensionless quantity.

Radiation

The quantized electro-magnetic field (in Coulomb gauge) is described by quantized trans-

verse vector potential

where

g(k) = (2w(k)) ™" and w(k) = |k,

with the dynamics given by the Hamiltonian

Hyg = /w(k)af(k) a(k)d*k/(27)%

acting on Hyaq = Fock space. Here a(k) and af(k) are the transverse annihilation and

creation operators, respectively (i.e. they are operator-valued vector fields on R? satisfying

k-a(k) =0 and k - aT(k) =0).
Matter

Quantum, non-relativistic matter is described by a Schrodinger operator of the form

N
1
Hpary = Z %P? + V()

1

on a Hilbert space Hpart (say, L2(R*Y)).



Spectrum of H,¢

Typically, the spectrum of Hpart is of the form (Hunziker-van Winter-Zhislin Theorem)
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Figure 1.

Matter + Radiation

Think about A as a (quantum) connection on R® and replace the particle momentum

operator by the covariant one:
p—pa=p—cA(r),

where e is a particle charge. As a result one arrives at the Hamzltonian for the system of

matter and radiation

1
H(e) = > —p 4+ V(z)+ Hraa

2m;

acting on the Hilbert space Hpart @ Hrad. If we assume ultraviolet cut-off in the form

2
ﬂ<oo,
w

then H is self-adjoint and is bounded from below:
H(e) > infspec Hpary -

The problem of radiation is to find the fate of the bound states of H,,¢ as the inter-

action between the particles and radiation is introduced, i.e. when the charges are “turned

on”.



Spectrum and motion

The main mathematical task of a quantum theory described by a Hamiltonian H is

to classify the solutions of the Schrodinger equation,

oy
ZE—HlZJ,

according to their temporal behaviour. The key invariant for such a classification is the
spectrum of H. In the case of Schrodinger opertors, for instance, the discrete spectrum is
in correspondence with bounded (in configuration space) motion (bound states), while the
continuous spectrum, with the unbounded one (scattering states) (the Ruelle theorem).
However, this classification is not sufficient for our purposes. A central role in our analysis
1s played by states which are localized for long periods of time, but eventually escape to co,
i.e. are, in fact, unbounded. These are the resonance states or resonances. In other words,
the (quantum) resonances are states which belong to continuous spectrum subspace, but
which behave for long time intervals as eigenfunctions of discrete spectrum. In the problem
of radiation of interest here the notion of resonances plays a key role. We define this notion

little more carefully in the next section.

Resonances

Extension of the notion of spectrum. For a self-adjoiont operator A on a Hilbert space

‘H and for any f.g € H

Point spec = { poles of (f,(z — A)_19>}

Continuous spec = { cuts of (f,(z — A)"'g)}
Now for a dense set D C H, we consider the Riemann surface, R, of (f,(z — A)"'g),

2 € Cr, for f,g € D.

Definition. Resonances of (A, D) = complez poles of the Riemann surface R.
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The study of resonances has a long history which we are unable to reproduce here. The
definition above, though the most straightforward, is one of many equivalent definitions.
In the spirit of the definition above the resonances were introduced in [39] and studied
in [24,25,37,40] among many other papers (see [37] and the papers above for some other

references).

Spectrum of H(0)

Set the charge (coupling constant) e to zero:
H(O) = Hpart & 1rad + ]-part ® Hrad .

H(0) describes the non-interacting matter and radiation. Its spectrum is
embedded EV’S(=EV'S H jgter ) cont. space
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Figure 2.

Rotate this spectrum (take a different projection of the Riemann surface of (f, (z —

H(0))"'g), z € C, onto the spectral plane):
2
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Figure 3.

Thus on the technical level the problem of resonances is the problem of perturbation

of eigenvalues of H(0), and of the corresponding eigenfunctions. The main mathematical
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difficulties are:

(a) even for bounded energy intervals the number of photons is infinite (soft photons),
1.e., roughly speaking, we have to deal with partial differential operators in infinitely

many variables
(b) the eigenvalues to be perturbed sit on the top of the branch points.

Both problems are features of a fundamental problem of Quantum Physics, the infrared

problem.

Mathematical Results

Now we formulate in an informal way our main results.

I. Binding. H(e) has a ground state (i.e. there is an eigenvalue at the bottom of its
spectrum). This ground state, 1, is exponentially localized in the particle space: for some

a>0

Jeol#ly]| < oo,

where @ stands for the particle coordinates.

II. Instability of Excited States. For e sufficiently small, H(e) has no other eigenvalues,
besides the ground state one. Unstable states have [ife-times predicted by the Fermi Golden

Rule.

III. Resonances. Assume e is sufficientlly small. Then while the ground state of Hpar
yields the ground state of H(e), the excited states of Hpay¢ bifurcate into resonances of

H(e). The Riemann surface of (f,(z — H(e))"'g) has the following structure
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Physical Picture

Since the photon mass is zero, even tiny energy fluctuations allowed by the uncer-
tainty principle (AEAt > h) produce an infinite number of photons (soft photons). Thus
even in the vacuum an atom is surrounded by a cloud of photons born out of this vacuum,
interacting with the atom and vanishing back into the vacuum. This cloud changes (renor-
malizes) the properties the atom would have if there were no radiation in Nature at all.
This change of the atomic characteristics was first demonstrated by Lamb and Retherford
in 1951 and is known under the name of the Lamb shft.

In the remaining sections we outline some of the ideas entering into our analysis.

Riemann Surface of H(e)

Fact: There are € > 0 and a family H(e, 6), analytic in || < ¢, s.t. the Riemann surface
of H(e) is determined by the spectrum of H(e,§), Imé > 0. In particular, the complex

eigenvalues of H(e, 6) are independent of § and occur at the poles of this Riemann surface,
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le.
{resonances of H(e)}

= {complex EV’s of H(e,6)}
(H(e,0) is a complex deformation of H(e).)
Thus the problem of finding the resonances of H(e), or more generally its Riemann

surface, is reduced to the one of understanding the spectrum of H(e, 8) for Im 6 > 0.
Renormalization Group Analysis

Let H(e,8) be a complex deformation of H(e), determining the Riemann surface
of H(e). Assume we are interested in the fate of an eigenvalue E; of Hpary and in the
spectrum of H(e, 6) near E;. Let Py, by the projection on the eigenspace corresponding
to an eigenvalue E; of the operator Hpar(6), which is a complex deformation of Hpari. We

define e(p), the effective charge at the photon energy scale p, by

e(p) =e- (p_l/wgp %)é :

For any p, 1 > p > 0, we define a transformation R, on operators on Hpari @ Hrad. This
transformation has the following properties:

(1) R, is isospectral in the sense that
0 € U#(H) «~+0e J#(RP(H)) ,

where 04 (A) stands for either point or continuous spectrum of A.

(1) Ry(Ppart @ wHrad) = Ppart @ wHyaq for all w € C, ie. R, has a complex line
Pphart @ CHyaq of fixed points.

(ii1)) Ry(Ppart @ E-1rad) = Ppart ® %E 1iaq for any F € C, 1.e. Ppary @ C-4d is an unstable
manifold for the manifold Pp,art @ CHyaq of fixed points w.r. to R,
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(iv) 3 a Banach space, B, of operators on H,,q s.t. VH € B and sufficiently close to
CHraqa 3 E € Cs.t. Ry (Ppart @ (H — E - 11a4)) — Ppart @ wHyaq for some w € C, i.e.
a neighbourhood of Pyart @ CHyaq is spanned by the unstable manifold Ppart @ C- 11aq
and a stable manifold.
(v) Forp> e, R,(H(e,0)—z) € Ppart® B for any |z| < AE, where AE = %dist (Ej, O'(Hpart\{E]‘})).
(vi) Ry, oR,p, =Ry p, (le. R, is a semigroup).
Note that properties (iv)-(v) imply that for H (e, ) there are complex numbers E;(e)
and w(e, 6) s.t.

R,(H(e,0) — Ej(e)) = Ppart @ w(e, ) Hyag

as p — 0. In fact, we can prove more:

(a) w(e,0) = w(e)e™?, Ej(e) and w(e) are independent of 6 and
Ry(H(e,6) — =) = w(e)e™" Huaa + Ope(p)

for every z € D, where D, := {z € C‘ (R,(H(e,0) —2))| < 1p}, with the expectation
taken with a state ¥pare @ Q, Ypary = any normalized vector from RanP,,,¢ and =
the vacuum vector in H,aq,

esides the obvious relation D, C 1 < p, the domains satisty
b) besides the obvi lation D, D, if p' < p, thed ins D, isf’
1
D, 2 D(E;(¢), £)

and

() Dy = {Ej(e)}

p>0
where D(E,p) = {z € C‘ |z — E| < p},
(¢) E(e)is an eigenvalue of H(e,8),

(d) In D,, H(e,#) is isospectral to

Ppart ® w(e)e_QHrad + E](e)
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modulo O(pe(p)) (infrared asymptotic freedom). See Fig. 5.
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Figure 5.

We do not specify here the space, B, of quantum Hamiltonians on which R, acts. It
can be found in [5-7]. Instead, we write out the explicit definition of R,. Let x#,<, be the
spectral projection for Hy, corresponding to the interval [0, p], and let P, = Ppart @ X1, <)
and P, =1 — P,. We define

R, = E,oS,0F, |

where E,(H) = %H,
Fy(H)=P,(H-—HR>,H)P

P

R>, :FP(PPHPﬂ)_lpﬂ
(cf. [20]) and S,(H) = e~ AP He!An P with

A= %/a*(k)(k Vi + Vi k)a(k)dE .

For the procedure above to work one needs that e(p) — 0 as p — 0 or, more precisely,

2
that, [ |Z—|2 < oo. This fails in the infrared region if ¢ = const.w™'/%, as w — 0, as in
the case of interest. There are several ways to relax this condition. One is to compose

R, with a Bogolubov transform. The latter is chosen to remove the terms in the effective
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potential which are linear in a# (the marginal terms leading to the restriction [ li—lj < ).
The other is to apply R, not to H(e,8) but to H'" (e, ), the complex deformation of
e_ieA(O)'szH(e)eieA(O)'EIj (the result of applying the Pauli-Fierz transformation to
H(e)). The Pauli-Fierz transform improves the infrared behaviour of coupling functions,

g(k), at the expense of a large # behaviour. The latter, however, is easier to control (see

[6-8] for details).
Conclusion

The results presented above describe the states of non-relativistic matter interacting
with quantized electro-magnestic field. We show that such a system has only one stable
state — at the bottom of its energy spectrum. This state is exponentially localized in the
particle coordinates. The system has a series of unstable but long-living states-resonances.
These unstable states are the ones that control the process of emission and absorption of

radiation.
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