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Abstract

We show there is an upper bound to the allowed frequencies of time periodic solu-
tions of a class of nonlinear wave equations: if ¢ is a 27 /w -periodic solution then

w? < f'(0), where f is the nonlinearity. We also prove that
27 Jw
/ [V 2oz, )2 d¥zdt < oo
0

for all o < £(0) — [/ %J%}Q where |a| denotes the integer part of a.

1 Introduction

In this article we study periodic solutions of the nonlinear wave equation (NLW)
Ol —Dp+ fp) =0 (1.1)

where ¢ : Y x, =, f: — with f(0) =0, and 0? = 8*/0t*, A = YN, 8?/0x>. By

a periodic solution we understand solutions that are periodic in time ¢, and L? in z. This
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notion extends, on the one hand, the concept of bound states of the Schrodinger equation and
of standing waves for linear wave equations and, on the other hand, the concept of periodic
solutions of dynamical systems (equation (1.1) can be viewed as an infinite dimensional
Hamiltonian system). Both concepts are among the simplest and most basic in the fields

mentioned.

To state our results we introduce some notation. Let S} denote the circle of radius w'.

The class of solutions we consider is the following set:

D, = {(p e H'(N x 8)) 5 ifis any of ¢, 0 or © - Vi, then ||| oo xs1) < 00

and lim |(z,t) |=0 uniformly in t } (1.2)

|z|—o00

(This class of solutions can, probably, be enlarged.) Here H'(£2) stands for the Sobolev space
of order 1 for functions on © and L?*(S:, H(V)) denotes functions ¢ : S} — HY(Y), such

that [[Y[|72v g1y + IVP[72v sy < 00

Our main result is a characterization of two fundamental properties of periodic solu-
tions: their frequencies and their spatial localization. More precisely, we prove the following

theorems.

Theorem 1.1 Suppose f € C3(,). Let ¢ be a nontrivial 2 /w-periodic solution of NLW on
D,,. Then w? < f'(0).

Theorem 1.2 Suppose f € C3(,) and that f'(0) # m*w?, m € . Let ¢ be a 2w /w-periodic
solution of NLW on D,,. Then e®l2lp € L2(SL, H' (™)) for all o satisfying

f,(O)JQwQ

w

o < f(0) - |

where |a| denotes the integer part of a.

In Theorem 1.1, by nontrivial periodic solution we exclude time-independent solutions. Theo-

rem 1.2 applies equally well to time-independent solutions. In that case ¢ solves the nonlinear



elliptic equation

—Ap+ f(p) =0.

Conversely, any solution of this equation is a time independent solution of NLW. For time
independent solutions we can take for the frequency w any positive number. Taking w
sufficiently large results in | %J = 0. On the other hand we have that if f'(0) < 0 then
¢ = 0. This result follows from Theorems 2.2 and 5.1 (below). The former theorem states,
in the context of Corollary 1.3, that if f'(0) < 0 then ¢ is exponentially bounded with
arbitrarily large exponent. By the latter theorem ¢ is then in fact zero. Thus, we have the

following corollary.

Corollary 1.3 Let f € C3(,) with f(0) = 0. Suppose ¢ € HY(Y) is a solution of the

equation

Ap = f(p)

such that ¢ and z -V € L®("N) and vanish as |x| — oc. If f'(0) < 0, then ¢ = 0. If
f1(0) > 0, then e*®lp € H*(N) for all o® < f'(0).

We comment on the condition f(0) = 0 in the above theorems. ;From a physical point

of view one often looks for solutions with finite energy F(y), where

Bp) = [, 500+ IVel + F(p), F'=]

Note that the potential F' is defined only up to a constant. We see that for solutions of finite
energy,

Op and Vo — 0 as [z| — o0

(at least along a subsequence). Therefore, ¢ — const. as |z| — oo. Since ¢ solves NLW,
this implies that (02 — A)p — 0 as |z| — oo and hence that ¢ — ¢ as |z| — oo where
f(¢c) = 0. If ¢ # 0, then by defining p. = ¢ — ¢ and f.(2) = f(z + ¢) we have that
020, — A, + fe(o.) = 0 with f.(0) = 0. Thus, in the situation considered the assumption

f(0) = 0 is not a restriction.



We also make several comments on extensions of these results to other equations. Com-
plex valued solutions of NLW for nonlinearities of the form f(¢) = g(|¢|)¢ can be analysed
using our method, the results being the same as above. In particular, standing wave solu-
tions, that is, solutions of the form o(z,t) = e“!¢(z), must satisfy w? < g(0) while ¢(z) is
exponentially bounded with any exponent a such that o? < ¢g(0) — w?. These results are
consistent with previous studies of standing wave solutions ([B], [Str]).

The results of this paper can be extended to a rather wide class of hyperbolic equations
and some of the results to the nonlinear Schrodinger equation. This will be done in a
separate publication. Note however, that frequency bounds of the type of Theorem 1.1 are
not valid for the nonlinear Schrodinger equation which conforms with the main premises of

our approach (see remarks below following the statement of Theorem 2.2).

To prove Theorems 1.1 and 1.2 we introduce a method into the area of nonlinear equations
which is related to one that has been developed, to great success, in the scattering theory
of Schrédinger operators: that of positive commutators, and by this we mean the following.
Let K be a self-adjoint operator on a Hilbert space of functions. We say that K satisfies
a positive commutator estimate on a set (2 if there is a self-adjoint operator A such that
(i[K, A])y > 0]|9||* for some 6 > 0 and for all 1) € Q. This is related to the Mourre estimate
[M] of quantum mechanics (for a discussion of the Mourre estimate and its uses see [CFKS]
or [HS)).

Our approach is motivated by pioneering studies of n-body Schrodinger operators of the
form H = —A + V on L*("), where V is multiplication by a real-valued function, ([FH],
[FHH-OH-O]). In these references positive commutator estimates based on the Mourre esti-
mate are used to establish (among other results) the exponential localization of eigenfunctions
of H. The situation we are considering here has some fundamental differences, though. One
of them is related to the fact that we are dealing with hyperbolic, not elliptic, operators,

another, to the fact that the equations in question are nonlinear.

We review briefly previous results on the subject. Exponentially localized periodic solu-

tions on the half-line were constructed in ([V],[W]) using techniques from invariant manifold



theory, while radially symmetric exponentially decaying periodic solutions outside of a ball in
N (the spatial domain) were found in ([S],[Sc]) using techniques similar to ([V],[W]). Unfortu-
nately, even in theses cases no exponential bounds for a reasonable class of periodic solutions
was obtained. The constraint w? < f’(0) was obtained for classical periodic solutions on *1
in [C] and extended to radially symmetric solutions in arbitrary spatial dimensions in [L].
In the works above it was essential that the spatial variable be effectively one dimensional:
the NLW was formulated as a dynamical system in a phase space of periodic functions with
x playing the role of the dynamical variable. Our results on the frequency restrictions ex-
tend those of [C] and [L] in that we study NLW in arbitrary spatial dimensions and we

assume considerably less regularity from the solutions (H! in space and time). Our results

on exponential bounds seem to be new even in the one dimensional case.

The paper is organized as follows. In Section 2 we formulate NLW as a nonlinear eigen-
value problem in such a way that if ¢ is a 27/w -periodic solution of NLW, then K, ¢ = Ap
where, for a given 27 /w -periodic function ¢ € D,, K, is a self-adjoint operator on a
Hilbert space of 27 /w -periodic functions. Section 3 collects preliminary results that we use
to prove exponential bounds for a class of hyperbolic operators, which is presented in Section
4. ;From this we obtain exponential bounds for periodic solutions (Theorem 2) by exploiting
the relation mentioned above. Theorem 1.1 is proven in Section 5. An appendix describes

an operator calculus that we employ.

Notation: For z € ¥  let r =| z| and £ = zr .

N.V = (8/0z1,...,0/0zy). For an operator B on L?*(N x S!), (B)y will stand for

V denotes the gradient operator on

the expectation value (B, ¥). [[1||r2(s1 m1(v)) denotes the space-time norm of functions

v S, — HI(Y);
||1/1||%2(55,H1(N)) = ”w”%Q(NijJ + ||V¢||%2(N><s}d)

where H™() is the L?(") Sobolev space of order r. The norm on L?(¥ x S!) will be denoted



by ||#||. We can decompose L?(¥ x S!) into a direct sum using the eigenspaces of i0;;
w
L2(N X Sulj) >~ Drek

where , = e*' @ L?(N). For ¢ € L*>(N x S!) we can write 1) = ¥, e, where 1 (x) =
2r/w)™! oo Y(x, t)e”™ ™ dt € L*(N) are the Fourier coefficients ("modes”) of ¢. Py will
denote the projection onto j : Pyp = ey, Py = 1 — Py, and I, = X< P with
I,=1-11,.

For an interval I C and self-adjoint operator H we define a smoothed-out spectral
projection Ej(H) as follows. Let ¢ > 0 be sufficiently small so that 20 < |I| and let
g € C2(,) be such that supp (¢g) C I and g =1 on I, where I, = {\ € I ; dist (A, 0I) > o}.
We then set Ef(H) = g(H). The parameter o is not made explicit since it is understood

that it can be taken as small as needed.

2 NLW as an eigenvalue problem

To apply the technique of positive commutator estimates we first formulate NLW as a (non-

linear) eigenvalue problem for a self-adjoint operator. Let
W(u)=——>—k, k=f(0). (2.1)

We assume that f € C3(,). Then, W € C!(,). For a given function ¢ € L*(N x S!) define
the "potential” W, (z,t) = W (yp(z,t)) acting as an operator of multiplication, and the linear

operators

K,=K,+W,, K,=08-A (2.2)

on L2(N x S!). Thus,

¢ is a 2w /w-periodic solution to NLW <= K, ¢ = —kop.



Lemma 2.1 Ifp € D, then W,,, O,W,, and x-VW,, are of class LY(N x S}) for all q € [2, 0]

and vanish as |x |— oo, uniformly in t.

Proof:

We denote W, simply by W. By the chain rule, /W = W'0,p and - VW = W'z - V.
Since W (u) € C'(,) and ¢ is bounded, W and W' are members of L®("Y x S!). Therefore
O,W and z - VIW are bounded.

There exist constants c,c and d, all strictly positive, such that | W (u) |< ¢ |« | and

\W'(u)|< ¢ |ul| for |u|< d. For q € [2,00) we compute;

Wl = [ _wpe o+ [ qw
Wy = [, IWI+ [ 1w
< cq||g0||qu(NX53J) + W meas{| ¢ |>d} = M, (2.3)

where b = sup {|W(u) | ; [u|< [|@]|peov xs1y}- Since [|o||poo(v g1 is finite, the continuity of
W (u) implies that b is finite. Hence M is finite. If ¢ € L®(Y x S1), then so is W. Therefore,
W e LI(N x St) for all ¢ € [2, co]. A similar argument applies to W', and therefore 0,1W
and x - VIV € LI(N x S.) for all ¢ € [2, o0].

Since ¢, Oyp and z - Vi vanish as |z |— oo, uniformly in ¢, W, ;W and z - VW vanish

in the same manner 0O

By the results of Lemma 2.1, for ¢ € D, K, as defined by (2.2) is self-adjoint on L?(V x
SL) with domain D(K,) = D(K,) = closure of H*(N x S.) in the graph norm |[¢|% =
19072 v sy + 1KoY l[72(w w51y We saw that if ¢ € L*(Y x S}) is a 27 /w-periodic solution
to NLW, then K, ¢ = —kp. That is, ¢ is an eigenfunction of K, corresponding to the
eigenvalue —k = —f’(0). For the remainder of the paper we will study properties of the
eigenfunctions of K, which we will translate into properties of periodic solutions of NLW
by considering, in particular, the eigenfunctions of the operator K, corresponding to the

eigenvalue —k.

We formulate the theorem concerning exponential bounds for eigenfunctions of the op-

erator K, from which we will derive Theorem 1.2.
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Theorem 2.2 Let K, = Ko-i—W(p, ¢ € D,,. Suppose K, = X for somep € L*(SL, H'(N))
and for some X\ £ —m?w? , me . If A\ <0, then €*¢ € L*(SL, H'(V)) for all a satisfying

[—X
O£2<—/\—|_ EJ2 2

where |a] denotes the integer part of a. If X > 0 then "y € L*(S}, H'(™)) for all .

Remarks:

If ¢ is a 27 /w -periodic solution of NLW such that ¢ € D,, then ¢ is an eigenfunction
of K, = K, + W, corresponding to the eigenvalue —x = — f’(0). Theorem 1.2 thus follows
from Theorem 2.2. We also have a kind of unique continuation at infinity theorem (Theorem
5.1 below) which states that if an eigenfunction of K,, is in the space e " L?(S}, H'(Y)) for
all @ > 0 then this function is in fact zero. This, coupled with the last statement of Theorem

2.2, implies that K, has no positive eigenvalues.

By separation of variables we see that the spectrum of the operator K, is composed of
semi-infinite branches of essential (continuous) spectrum originating at the points {—m?w? ; m € }.
We expect that the essential spectrum of K, will be stable under the perturbation W, (this
would certainly be true if W, was compact relative to K,, by Weyl’s theorem). Thus, due
to the nonresonance condition A # —m?w? and the assumption A < 0, there is an integer

m, > 1 such that

—m2w? < A < —(m, — 1)%w?

Then, [\/> |? = (m, — 1). In keeping with terminology used for Schrédinger operators, we
call the set £(K,) = {—-m?w? ; m € } the thresholds of K,. Therefore, Theorem 2.2 states
that eigenfunctions of K, are exponentially bounded with any exponent « such that o? is
less than the distance from A to the nearest threshold above (i.e., greater than) A (see Figure
1).

The thresholds of K, are precisely the spectrum of the operator —9}7 on L?*(S}), the oper-
ator associated to the time variable, while the branches are due to the continuous spectrum

of —A on L?*(V), the operator associated to the spatial variables. In general, the nature of

8



Figure 1: (Rotated) Spectrum of K,

the spectrum of the associated operator K, will depend on the nature of the spectrum of
the operators associated to the spatial and time variables. Consequently, the statements and
conclusions of the above theorems will change accordingly. For example, in the case of the
nonlinear Schrodinger equation (NLS); 0, — A + g(J¢|)¢ = 0, the spectrum of i0; on
L*(S)) is {mw ; m € }. Therefore, the spectrum of id; — A on L*(Y x S!) has branches of
continuous spectrum originating at each integral multiple of w. This conforms with the fact

that periodic solutions of NLS with arbitrarily large (negative) frequencies are possible.

Outline of the proof of Theorems 1.1 and 2.2:

We will omit the subscript ¢ when discussing the operators K, and W, so that from now
on K = K, and W = W,. We begin by presenting an heuristic argument that delineates the
structure of the proof of Theorem 2.2. Let ¢ € L*(S., H'("V)) and suppose that K1 = A\t

for some A <0, A # —m2w?, m €. For R >0 and § > 0 set

Ve = xxey, and

K' = ShMKe M) — K — 82| Vh|? + idy.

Here h(r) =0, r <2R, h(r) =r, r > 3R and 7, = ;(Vh-V + V- Vh). xg is a smooth
cut-off function: xz(r) =0, r < R and xx(r) = 1, r > 2R. The important features of the
function h are that h = 0 on supp (x,), h(r) = r near infinity, with [A™ (r)| < ¢, R'™™, cm



independent of R.

Our goal is to show that 1, € L2(S, H'(Y)) for some § > 0 even though for now we are
purposely forgetting that 1, may not be in L2(S., H*(¥)). This is just so we can elucidate
the ideas behind the proof, the heuristics presented here will illustrate all the essential ideas
of the full proof. In the rigorous analysis we will regularize this function by cutting-off A
near infinity so that ¢, € L2(S}, H*(Y)), regaining €’ 1 in a limiting procedure at the end.

The significance of the operator K" is that ¢®*")4) is an eigenfunction of K" corresponding
to the eigenvalue A. The factor x, causes ¥, not to be a bona fide eigenfunction of K", but

it is an approximate eigenfunction in the sense that

IE" = Nl < 0n(D)l19llz2qs, vy (2.4)

where 0,(1) denotes a quantity that vanishes as R — oo. This follows from the formula

(Kh - )‘)le = eJh(T)XR(K - )‘)w + €6h(T)[_Aa XR]dJ

= (=Axr)¥ — 2Vxz- VY, (2.5)

where we have used that i = 0 on supp (X}), and then the property |X§gm)| < c¢R™™ to arrive
at (2.4).
Let A= 2(z-V +V-z). Since e’ is an eigenfunction of K", we have that

0 = Im{((K"—=X)eqy Ae®hT)qp).

This equation is related to the virial theorem of quantum mechanics [CFKS]|. Expanding the

inner product, we find

0 = Im{(K"—X)ehMyp, ATy
2

1, 0% .
§<Z[K, A])eéh(r),l/) + 0Re <’)/hA>esh(r)w - §<Z[|Vh‘2, A])ezih(r),l/).
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If we substitute 1, for e in this equation the left hand side is no longer zero, but since

(K" — M)ty is localized to the support of X, (cf. (2.5)) where h = 0, we find that

I {(K" = Non, 4| < clld g vy,

where c is independent of R. Furthermore, since v, = Vh'r—1AvV/h/r~1, a simple calculation

gives

Re (7 A)y, = Re(VHr 1AVHr-14),,
= (Vhr=1A*hir=1)y, + Re (VHr—LA[VR'r=1, A}y,
= (VIr1AVhr-1),, + %wﬁm, VR, Al D)y,

= positive term +0R(1)||¢R||2a

where we have used that h'r—1[A, [VVh'r=1, A] | < er~'. We calculate

[IVAP, Al = |2n'B"r

< ¢

independently of R (here we are using the property A”(r) = 0 for r > ¢'R for some fixed ¢/,

which will hold in the rigorous analysis), so that
. 2 2 2
S VAP, Al)ye| < 8 [lall”
These relations yield
(K, Alyn — on(D¥all* — cd®[[¥all* < cll¥llass mevy- (2.6)
If we can show that

<Z[K, A]>¢R > 0||¢R||%2(5$,H1(N)), for some 6 > 0, (27)

11



then from (2.6) and (2.7) it follows that for R sufficiently large and ¢ sufficiently small,

||1/)R||%2(55,H1(N)) < C||¢||%2(55,H1(N)) < oo

Hence, ey € L2(SL, H(V)). Although § must be taken sufficiently small, we will be sure

to show that it is still strictly positive.

Some effort is required to prove the positivity estimate (2.7). Evaluating the commutator
ilK, A] = —2A —x-VW
and writing —A = K — 07 — W, we have
(K, Ay = (=D)pp + (K = Ny + Nyr + (=0 g — (W +2- VW )y,

Now,

K—X = KM= X+68Vh|> — iy, (2.8)

and since K — ) is self-adjoint and 7, is skew-adjoint,
(K — )‘>¢R = Re <Kh - )‘>¢R + 52<‘Vh|2>’¢R

from which we derive (recalling (2.4))

(K = Nyl < ™ = Nyl + 0822
< K" = A el 1l + e8|
< or(W|Y||z2sy,mr vy || ¥=]] + c0?|| Yz |)?
< or(M 19132051, mvy + WrllFgsn,mvy]| + c8%llval.
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By Lemma 2.1, W and z - VW both vanish as |x| — oo uniformly in ¢. We use this property
and the fact that 15 is supported outside of a ball of radius 2R to obtain the estimate

[@W +2-VIW)y,| < oa(D)ll¥all*.
Therefore, we have the inequality

GIE, Alge > VYl + Mgall® + (=07

—og(1) [||¢||%2(55,H1(N)) + ||¢R||%2(S},,H1(N))] — co?|lell?. (2.9)
To achieve (2.7) we require that
(=0)ue = (A+D)¥al®, v>0

up to a remainder term that we can control. In fact, due to the discrete nature of the

spectrum of —9?, we can show that
(=0 )y > maw?|[all?, (2.10)

up to a remainder term, where m, > 1 is the integer characterized by the relation

—mow? < A < —(m, — 1)?w?. To prove (2.10) we write

¢R = ﬁmofle + Hmo,le

where II,, denotes projection onto the first m modes and II,, = 1 — II,, (as defined at the
end of Section 1). Note that I, 1, satisfies the estimate (2.10). Using that —021l,,, 1 >
m2wl,,, _1 and that —0?I1,,,_; > 0 (these inequalities are in the sense of quadratic forms),

we obtain

<_8t2>’¢'R = <_a?>l:[mo_11ﬁ3 + <_at2>Hm071¢R

> m2w2 <ﬁmo—1>¢R

o
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= myw?[Yell® — miw? (T, —1)yy (2.11)

To estimate the second term on the right hand side we proceed as follows.

If Py =0, |k| <m,—1, then (2.10) is achieved because I1,,, 1%z = 0. This will be the
situation in Theorem 1.1 (as we will see). Otherwise, pick an interval I C containing A and
such that sup (I) < —(m, — 1)?w?. Let E7(K) be a smoothed-out spectral projection of K
corresponding to the interval I (as described at the end of Section 1) and decompose IT,, 1

with respect to E;(K) and E;(K) to obtain

Mot = (Er(K) + Ey(K)) M, (Er(K) + By (K))
- EI(K)HmoflE[(K) + EI(K)HmoflE[(K)

+ Ei(K)p, 1 Ei(K) + Ej(K)y,—1E(K). (2.12)
From this and the Schwarz inequality we then have the bound

(M, 1)y | < BIEH(K)alllgall + (C)u (2.13)

where C' = Er(K)IL,,,—1 Er(K) is a compact operator, as we will see shortly. Because ¢ has
support that goes off to infinity as R — oo, this term is of order 0, (1)||¢z]|* (cf. Lemma 3.3
below).

To prove that the operator E;(K)IL,,, 1Er(K) is compact, we need some kind of relative
compactness of W. To this end we take advantage of the natural decomposition of K, along

the eigenspaces g:

from which it follows that
(K, —2)7" = Gpe(—k W —A—-2)"" z€\.

Our assumptions on the solution ¢ guarantees that each mode Wy(z) of W (= W,,) is

compact relative to —A as an operator of multiplication on L%(V). As a result, W is compact

14



relative to K, when restricted to finitely many of the subspaces ;. Introducing the spectral

projections E;(K,) associated to the operator K,, we write

Ej(K)p, 1 E((K) = E;(Ko)lp,—1Er(K,)
+ (E1(K) = Er(Ko) ), Er (K)
+ B1(Ko) T, 1 (Er(K) — Er(K,)). (2.14)

The first term on the right hand side is zero by conservation of energy. That is,
P.E;(K,) =0 for k < m,. (2.15)
This relation can be seen as follows. On Ran P, =, K, = —k?w? — A so that
PEr(K,) = P.Ej(—k*w?—A).

Since sup (I) < —k’w? spec(—k*w? — A) = [-k?w?, c0) is disjoint from I. Hence,
Er(—=k*w? — A) = 0.

To treat the other two terms on the right hand side of (2.14) it is enough to consider the
resolvents R(z) = (K — 2)™" and R,(z) = (K, — 2)~! in place of the projections E;(K) and
E(K,). For the second term on the right, say, and using the second resolvent equation, we

have, for any m; €,

R(2)W Ry(2), 1E1(K) = R(2)[L,, W Ro(2) L, 1 E1(K) + R(2)L, W R, (2)I1,,,,_1 E1 (K).
(2.16)
By the relative compactness of W, WR,(z) is a compact operator on each g, and so
I, WR,(2)I,,,_1 is a compact operator for each m; € since it acts on finitely many
k- Thus the first term on the right hand side of equation (2.16) is compact. By taking m,
sufficiently large we can make the second term arbitrarily small in norm. This can be seen by
noting that if W is time independent and if m; > m,—1 then, because W will commute with

the projections Py, II,,,WR,(2)I,,,_1 = 0. The time dependence of W couples the space

15



and time variables and can bridge the gap between II,,, and II,, _;, but we can estimate

this by writing

My, WRo(2)n,—1 = 07 001, WR,(2) I, _1
= 0 'Ly, (OW)Ro(2) U, —1 + 05 T, W Ry(2) 011, 1.

If 0, is bounded relative to K,, as will be the case if, in particular, 0;/W is a bounded
function, then (0;W)R,(z) is a bounded operator. Combining this with the estimates

107 i, | < 1/, and [|0:TTm, 1]l < 1m0 — 1,

we see that ||II,,, W R,(2)Il,,,_1|| can be made arbitrarily small by taking m, sufficiently large.
Therefore, referring to (2.16), R(2)W Ro(2)Ty, 1 Er(K), and hence (E;(K)—E;(K,)) Ty, 1 By (K)

is compact.

Going back to (2.13), we use the fact that v is an eigenfunction of K corresponding to
the eigenvalue A to show that 1 is essentially localized in I with respect to the spectral

decomposition of K, i.e., that ||E;(K)z|| is small. More precisely, we will estimate

B (K )l l1oall < d™ 0r(D) 1901132051, 0vy) + ¥rllFogss vy
+d7' (6 + V) [rll 251 vy (2.17)

where d = dist (01, \). This follows from the formula, derived using the functional calculus,

1B (K)all < d™ [(B = A)all,

and the estimate

(K = Noell < 0rW)[Plz2sy,mevy) + 000 + D[¢ellzaesy,m vy

which follows from (2.4), (2.8) and the triangle inequality.
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Figure 2: Phase space decomposition of (—9?).,..

We want to emphasize that here we are localizing simultaneously in two non-commuting
operators; in K and in 40;. That is, we are using the spectral projections associated with
K and i0;, E7(K) and P, respectively, to decompose phase space (= L*(S}, H'(Y))) into
regions where —d? has certain properties. In particular, on RanIl,,, 1, —8? > mZw? i.e.,
is strictly positive, while on RanIl,, 1, —0? < (m, — 1)*w?, i.e., is bounded. We further
decompose RanIl,,, | according to the subspaces Ran E;(K) and Ran E;(K) where I1,,,, 1
acts either as a compact operator (E;(K)Il,,,_1E;(K)), or else is proportional to E;(K)
(Er(K),,,_1E1(K), etc.); see Figure 2. Either of these latter cases lead to expectation
values, evaluated on ¢z, that can be made arbitrarily small by varying the parameters R

and ¢ associated to .

Combining (2.11), (2.13) and (2.17), we have that

(=) = maw?|lo|” — dilOR(l)[”w”%%Si,Hl(N))+||wR||%2(S‘},,H1(N))]

— ox(W)[Yll* — d'6(8 + DlIvallZa(ss m vy, (2.18)
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and so

(K, Ay > bllYallizs meyy — (@74 1)03(1)[II¢|I%2(55,H1(N)) + ||¢R||%2(S}J,H1(N))]
— d7'6(8 + D) [rllZ 251, m1evy) (2.19)

where b = min (A + m2w?, 1) > 0. Thus we have achieved (2.7) for R sufficiently large and
0 sufficiently small.
Since § must be taken sufficiently small we cannot prove arbitrarily large exponential

bounds at once. Therefore we will iterate this procedure to obtain greater bounds.

Regularization and iterative scheme

To make these heuristics rigorous we cut-off the function hA(r) = h,(r) at infinity so that
ey € L2(SL, H'(N)). The cut-off depends on a parameter &: h(r) = hg(r), and is such
that lim,_,o hgp(r) = r+const. forr > R. Our regularized function is then r€7= (")) where
Xr is a cut-off function with support in a neighborhood of infinity. We then show, following
the ideas outlined in the heuristics above, that for R sufficiently large and ¢ sufficiently small

Shg,e

but nonzero, ||xre (T)¢||L2(S$,H1(N)) < ¢ < oo uniformly in €. By taking the limit ¢ — 0

we conclude that ey € L*(SL, H'(V)).

We discuss the regularization procedure. For R > 1 let x(r) be a smooth function such
that xp = 0 for r < R, xr = 1 for » > 2R and |X§gm) |< enR ™. For € > 0 and the same R
let h(r) = hg.(r) be a smooth function such that

h(r) = 0, r <2R
= r—3R+1, 3R< r <3R+1
= 2+, r 22BR+3),

with h defined on the intervals [2R, 3R] and [3R + £, 2(3R + 1)] in such a way that

| R™(r) | < ¢, R'™, 2R< r <3R
< ¢,(3R+1H)'™™ (BR+1)< r <2(BR+1)

18



Figure 3: The functions x.(r) and hy ()

(see Figure 3). We remark that the constants c,,,c,, and c,, are independent of R and e.
The function hp we define as

he(r) = limhg(r)

and is equal to r + const. in a neighborhood of infinity.

The method outlined above secures some exponential bound § for . To achieve a better
bound we iterate this method, incrementally approaching the optimal bound. We begin the
iteration by assuming that ¢, = e*¢ € L*(SL, H'(Y)) for some a > 0. To prove that
there exists a 6 > 0 such that e’™¢, € L2(SL, H(Y)), we regularize the function e’ 1,
as xre®™Mp, = &, which was described above. We then show, in the same way as for
Xz€Mp, that for R sufficiently large and ¢ sufficiently small but nonzero, call this §(c),
that ||XR€6(a)h(T)wa||%2(5&”H1(N)) < oo uniformly in ¢ (the € appearing in hy.). Therefore,
after taking the limit ¢ — 0, we conclude that eX@r+eryy ¢ [2(S1 H'(Y)) and hence our
new exponential bound for ¢ has exponent a + d(«). Now we set 1, = e, where
o = o+ 6(c), regularize this function as yze?*"1),,, and repeat the above analysis to
determine ay = ay + §(aq). Finally, we show that as n — oo, A+ a2 — —(m, — 1)%w?

if A < 0 (recall that m, > 1 is the largest integer m such that A < —(m — 1)%w?), or else
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Figure 4: Spectrum of K, when w? > f'(0).

becomes arbitrarily large if A > 0.

The next main result after Theorem 2.2 is a sort of unique continuation theorem at
infinity (Theorem 5.1). It states that if eigenfunctions of K are exponentially bounded with
arbitrarily large exponent, then the function is zero. This is used in the proof of Theorem
1.1. However, with Theorem 1.1 we work with the time dependent part of ¢: ¢ — Pojp = @
(recall that (Poq)) (#) = (2m/w) ! [g1 (2, 1) dt). We first show that @ is an eigenfunction of
an operator K which is constructed in a similar way as was K after first projecting NLW onto
+: K@= —kp, where k = f'(0). From this we prove, along analogous lines as outlined in
the heuristics above, that e*" ¢ € L*(S1, H'(V)) for all a. We are able to show this because
by using K instead of K we have removed the only threshold above —, the threshold 0
(that this is the only threshold above —x follows from the assumption that w? > f'(0) );
see Figure 4. The unique continuation theorem holds also for K from which it follows that

@ = 0. Therefore, ¢ = Py, that is, ¢ is independent of time.

The proof of Theorem 1.1 is less involved than the proof of Theorem 2.2 because we
do not require a microlocalization of (—9})y. In Theorem 1.1, we will be dealing with the
function @ = ¢ — Py so that (—9?)5 > w?||@||?. Therefore, equation (2.10) is satisfied (here
me = 1). For the proof of Theorem 1.1, then, the reader may proceed directly to Section 5.2

for a (mostly) self-contained proof.
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3 Preliminary Results

In this section we present a series of preliminary results that will be used in the proof of
Theorem 2.2. We remind the reader that we will be denoting the operators K, and W,
simply as K and W. The symbol 0x(1) will denote a positive function that depends only
on r and vanishes as & — oo. Positive constants will be denoted generically by ¢ and will
always be independent of the parameters R, d, e and «. In this way the explicit dependence
on these parameters of the estimates will be apparent.

The aim of this section is to prove the estimates (2.7) and (2.10) - this is carried out
in Propositions 3.8 and 3.7 respectively. Recall that we are considering the eigenfunction
¥ of K corresponding to the eigenvalue A\: K¢ = Ai. We assume that for some o > 0,
VYo = e®™p € L2(SL, H'(V)) and for § > 0 define &, = xe®™™), where the functions xx(r)

and h(r) have been described in the previous section.

3.1 Spectral Localization

Here we determine the localization of the function &, with respect to the spectral decompo-
sition of K. Since K1) = Xy, if we set E; = E{yy, then ||E{\y9|| = 0. There is no reason to
expect that &, should also be so well localized near A. However, it will be enough if we can
obtain an upper bound for this localization. This will follow from Lemma 3.2 below via the
calculation described presently.

;From spectral theory and noting that for 8 € I, (K —f3) is invertible on E;, we calculate
Ery with the formula

Br=Er(K =B K= 8)= [ (u=B)""(uB)dE,, (3.1)

gl

where dE, is the spectral measure on associated to K. This leads to the estimate

1|l < (dist (BT, 8))~" [|(K — B)y. (3-2)

Lemma 3.2, below, provides an estimate for ||[(K — XA — a?)&,||, but before that we require
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the following estimate.

Lemma 3.1 Let K? = e! Ke " where, for § >0 and o >0, H(r) = 6h(r) + ar with h(r)
as defined in Section 2, and let ¥, and &, be as above. Then

N~ Neall < (4 a)on (L) ol cxcsp.mev (3.3)

Proof:

(K" =N = e"Oyxa(K =Ny + "DK, xa]v

= e"[-A, xr]Y
= e ((=Axr)Y — 2Vxz - V¥)
= (=Axr)Va — 2VXz - Vo + 20V X5 - 21, (3.4)

Here we have used that (K — A)y = 0, that » = 0 on supp (x,), and that
e Vi = Vb — aithy. (3.5)
Let ¢; and ¢, be constants (independent of R) that satisfy the inequalities
[ Xn SR Xy [< R (3.6)
Combining this with (3.4) and noting that Vi = X2, and Axz = X + #x’,{, we have,
(K™ = Néall < (2 + (N = D)er/2) R ||vhal| + 261 R Vol + 2c10R7 [Wall - (3.7)

from which (3.3) follows O

Lemma 3.2

I(K = A=o)&ll < p00)on(D) [[Walliass oy + Nallasy,me)
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+ 20(0 + 2a) ||| (3.8)

where 1 1s an increasing function of both variables.

Proof:
Recall from the previous lemma that K# = el Ke™" where H(r) = 6h(r) + ar. Pulling
e~ " through K we find
K% = K—|VH? +ivy (3.9)

where v, = +(VH -V + V - VH). ;From the relations

1

K? -\ = K-\~ |VH* +iyy

= K- )—a>—0|Vh|* =20aVh- 3 +ivy (3.10)
and
”(KH - )‘)é‘a”2 = <(KH - )‘)gaa (KH - /\)ga): (3'11)
we obtain
(K™ = N&|? = [[(K =X —a®)&lI? + [|(6%(h)? + 26ah’ — ivy)&all?

—2Re (K — X\ — )&, (6*(K')? + 20k )E,)

+(K, val)ea- (3.12)

Here we have written |Vh|?> = (h')? and Vh -2 = h'. Since we are interested in an upper
bound to [|[(K — A — a?)&,|| we need only estimate the nonpositive terms on the right.

Because A’ < 1, independently of ¢ and R, from the Schwarz inequality we have that
2Re((K — A = a*)éa, (B*(R) +20a)Ea)| < 25(5+20) (K = A = o)l [&ll-(3.13)
Expanding the commutator in the last line of (3.12) we obtain
ilK, vu] = W0[K, ] +ia K, 9] (3.14)
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where 7, = 1(VR-V+V-Vh) and y = L(Vr-V+V-Vr) = 1(&-V+V-2). For the

first commutator we calculate,

Z[Ka ,Yh] = Z[_A+ W7 ’Vh]
= [-A, 2Wr'w-V] + [-A, B"+ (N = 1)h'r™!]
+ [W, 2h'r 1tz - V). (3.15)

Because

[—A, 20'r 'z - V] = 2hr ' =A, z-V]+2[-A, Wr 'z V
= —4h'r A+ 4(Wr 3 —h'r ) (x- V)?
— ((N +3)h'r 7+ (83— N)A'r > + h'"T_l) z-V , (3.16)

with |R(™(r)| < ¢, R™™, we have that

([=A, 2h'r7 'z - V))e, = @CRT7'[-A, 2 -V])e, + 4V -z (Wr™> =h'r )z V),
+eR7 €I (3.17)

The first term on the right hand side is positive while the second term is bounded above
in absolute value by cR™!||V&,||?>. The absolute value of the real parts of the expectation

values of the other terms in (3.15) can be bounded above by 0z(1)]|&4]|?>. Thus,

(K, mle. > —0r(1)1€allLas,mr(v))- (3.18)

The second commutator, i[K, 7], satisfies the same estimate since i[K, ] is as (3.15) with
h'=1and h" = 0.

Combining the above estimates and dropping the positive terms, we have that

I = Neall® > 1K =X = a®)all* = 20(6 + 20) | (K = A = o*)éall |1l

—(6 + a)or(D)|€allT2(s1, 11 (vy)- (3.19)
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Rearranging, we write this as

[ (K = X = a®)éall = 8(5 + 20| ]2 < ET = N&all? + (6 + a)or(DliEallZa(sy,m vy

+(5(6 +20)J&all) - (3.20)

Taking the square root of both sides of (3.20), using Lemma 3.1 to estimate |[(K# — \)&,]|,
and writing (4, @) = max ((a +6)Y2 (1 + a) ), we arrive at (3.8) O

3.2 Commutator Estimates

Our goal in this section is to establish an analogous estimate to (2.7) for the commutator
i[K, A] (cf. Proposition 3.8). For this we will require the estimates on the spectral localiza-
tion of £, obtained in the previous subsection as well as an estimate analogous to (2.10) for
the expectation value (—82)¢, (cf. Proposition 3.7). In order to establish the latter we first
show that certain operators constructed from the projections E;(K) and Py are compact;

several of the following lemmata are for this purpose.

The compact operators that will arise in our analysis are not necessarily small in norm,
but we take advantage of the structure of the functions &, to control these terms as the

following lemma demonstrates.

Lemma 3.3 If C is a compact operator, then

[{O)e | < or(D)]Eall”. (3.21)

Here, as elsewhere in the paper, or(1) vanishes as R — oo uniformly in e and §.
Proof:
Recall that &, = xze"1),. Let F be a finite rank operator;

M

Fip =Y (¥, 0i)G, (3.22)

1
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for some ¢;, (; € L*(N x S1). By the Schwarz inequality,

| €as i) | = | {bas Xrpo0i) |
< [lEall Xzl (3.23)

where the R appearing in xg,, is the R associated to §,. For n > 0 choose R;, 7 =
1,..., M, sufficiently large such that for R > R;, Xz L0l < nll(M||&]) . Then for
R > max (Ry,...,Ry),

M
IF&ll < 31 {Gareid [ 1G]

1
< nlléll (3.24)

independently of ¢ and § (the ¢ and 0 appearing in &,). Now, for an arbitrary compact
operator C' there is a finite rank operator F; and operator B, with ||B,|| < 7, such that

C = F, + B,. By the preceding analysis,

1C&II < [[Féall + 1By &ll

< 27|l (3.25)

for R sufficiently large. Applying the Schwarz inequality to (C)¢,, we obtain the desired

result O

Lemma 3.4 For any integers my; > 0, my > 0 and any interval I C

m1—|-1

I, Er L, < const. (

— 1
) and ||, Er1L,, || < const. (m1 i ) :

(3.26)

Proof:
Let ¢ € C°(,) be a smoothed-out characteristic function of the interval I such that

E; = g(K) as described at the end of section 1. We are denoting E;(K) simply by E;.
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Noting that 9,0;' = Id on range Il,,,, we begin by writing

U, Erlly, = Iy, Er0,0; M1,

= Oy, E10; M,y + 11, [Er, 8,0, 11, (3.27)
We use the operator calculus described in the appendix to express the commutator;

[Br, 8] = | dj(z)(K—2)""[K,9] (K —2z2)"

- / dij(z) (K — )" oW (K —2)7". (3.28)

Here z = u+iv and §(z) is an almost analytic extension of g. As described in the appendix,
dg(z) = a(z) dudv+b(z) dudv, with a(z) and b(z) compactly supported, a(z) supported away
from v = 0, and | b(z) |< const v?. This, combined with the estimate |[(K — z) ! < v*
and the boundedness of 0;W imply that ||[E}, 0]|| < oo. Going back to (3.27), ||0IL, || <
miw and ||0; ' L,,|| < 1/mow imply that ||[,, EilL,,|| < mi/mo + ||[Er, 0)]||/mew <
const (™31). The same result holds for I, ETLy, since (T, Erlly) = (Iy, By, )" O

Lemma 3.5 For anymi,my € and z € \, I, W (K, — z) 11, is a compact operator

on L*(NV x S1).

Proof:

First note that (K, — z)~! decomposes along the eigenspaces of i0; as
(K, —2)7'P, = (=k*w? — A = 2)71, (3.29)
and that for ¢ € L2(¥ x S1),

(We)(z) = ;Wzk(iﬁ)%(ﬂﬁ) (3.30)

where

Wik(z) = (27r/w)—1/51 W (z, t) e~ i0-Rut gt

w
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Thus,
M, W (Ky — 2) 7 Iy, = Z e Wik () (—k2w2 - A - z>_1 P, (3.31)
|k]|<mg

[t]<my

The sum in (3.31) is finite so it is enough to show that €™ W, (—k*w? — A —2) ' Py is
compact for each I, k. Since Wy, € L®(") and vanishes as |z| — oo (this is a consequence

of Lemma 2.1), Wi, (—k2w? — A — z) ' is a compact operator on L%(") (see for example

[RS-IV]). Due to the relation
eilwtw/lk (_k2 2 A — Z)il _ ei(l—k)wt ® VVlk(_k2w2 —A— Z)_l (332)

on , each term on the right hand side of (3.31) is compact. Thus, IT,,, W (K, — 2z)"'II,,, is

compact O

Lemma 3.6 Let E; = E;(K) and EY = E{(K,). For any interval I C and any integer

m €, (Er — E9) 11, and I1,,(Er — EY) are compact operators on L*(N x S1).

Proof:
We prove that (E; — FE¢)I1,, is compact. Since I1,,,(E; — E¢) = ((Er — E9)I1,,)", this will
imply that IT,,(E; — E9) is also compact.

Let m; > m. Then

(Er — E)IL,, = I, (E; — E)I,, + I, (E; — E9)I,,

= Iy, (E; — E)Iy, + [, Er . (3.33)

We have used the commutativity between II,, and E¢ in the last line. To compute the
first term on the right hand side we use the operator calculus described in the appendix to

represent E; as

B = / di(2) (K — )~ (3.34)

and similarly for EY (recall that E; = g(K) and E¢ = g(K,)). Next, for my > m; and using
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the second resolvent equation, we have that

oy (Br = BTy = Ty { [ di(2) ((K = 2)7" = (6, = ) 1L,
I

+ [ dg(2) M, (K — 2)" ', W (K, — 2) ' . (3.35)

By Lemma 3.5, the first integrand on the right hand side in the last line is compact for
each z € \ . Since this integral is the norm limit of Riemann sums, each of which is a
compact operator, the integral itself is a compact operator (which depends on m; and ms).

To estimate the second integral we write

I, (K — 2) 'y, W (K, — 2) M,y
= I, (K —2)7'0;'0,11,,, W (K, — 2)"'II,,
= Iy, (K = 2) 10, ', (OW) (K, — 2) 'y,
+ My (K — 2)710; My, W (K, — 2) 710,10, (3.36)

where we have commuted 0; through (K, — z) ™! in the last line. Recall from Lemma 3.4
that dg(z) = a(z) dudv + b(z) dudv with a(z) and b(z) as described there. This, combined

with the estimates

I =27 <07 ((Ko— 2 <07 07 gl € 1/maw, and [41L]| < mov,
(3.37)
plus the boundedness of W and 0,W, implies that

I [ da(2) T, (K = 2)7 Ty W (K = 2) 7 Tl | < /2 (3.38)

(here ¢ depends on m but m is fixed).
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Now consider the second term on the right hand side in (3.33). Applying Lemma 3.4 we
find
T, Er || < const (1/my). (3.39)

Therefore,

(Er — EY)IL,, = Cryymy + By + B, (3.40)

where C,,, m, is compact for each my, mg and || By, || < const (1/my), ||Bm,|| < const (1/my).
Since m; and mgy are arbitrary, we see that (Er — E9)II,, is the norm limit of compact op-

erators, and as such is itself compact a

Proposition 3.7 Let I C and
m =min {m € | —m?w? <sup (I)}. (3.41)
Then for any ¥ € L*(N x S!),
(=00)y = mW|YII* = 3m* W || Ergl| |9l + (C)y (3.42)

where C' is a compact operator.

Remark:

Of the terms on the right hand side in (3.42) it is the positive term m?w?||¢||* that plays
a key role in the proof of Theorem 2.2. Notice that this does not necessarily mean that the
expectation value (—0?), is positive. The usefulness of (3.42) for us is that we will be able

to control the last two terms on the right.

Proof of Proposition 3.7:

Since I1;_; 4+ II;,—1 = 1 we have
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Using that the first term on the right hand side is positive and that

- ?Hm—l > mw2Hm—1

= mw® — mwlly i, (3.44)

we obtain

-0} > mPw? — mPWill,_ . (3.45)
For the second term on the right we write
Mn1 = Efllz 1 Er

+E_[ Hm_l E[ + E[Hm_l E_I

+ B By (3.46)

The expectation values of the last three terms on the right are estimated as follows. Let

e L2(N x SL). Then

(Bl Eryy | = | (a1 Er¢, Ere) |
< | Ero| |Ervl
< |E| |1, (3.47)

using the Schwarz inequality. The last two terms on the right in (3.46) satisfy this same
estimate.

The first term on the right in (3.46) we write as

EfMly E; = E°M,; E¢
+(Er — B9 E;

+ BTy (E; — EY). (3.48)
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The first term on the right in this equation is zero because
P.E? =0 (3.49)

for |k| < m. This was explained in Section 2, but for convenience we repeat the argument

here. On Ran P, =, K, = —k?w? — A so that
P.E(K,) = PEi(—k*w? - A).

Since sup (I) < —k?w?, spec(—k?w? — A) = [—k?w? oo) is disjoint from I. Hence,
Er(—k2w? — A) = 0.

Going back to (3.48), (Er — E9)Il;; 1 and 15 1(E;r — E9) are compact by Lemma 3.6.
Thus, E/Il;_1E; is compact. Equations (3.46), (3.47), and (3.48) together show that

(MW’ lm1)y < 3m°W? | Ergll 9]+ (C)y (3.50)
where C' = E/Il;_1E; is compact. Combining this with (3.45) yields (3.42) O
Proposition 3.8 Let I C be any interval containing X+ o? and let A= (- V +V - z).
Then

(i[K, Ae, > (A + o + )|l + [ VEal®
3m2w? ) )
_( 7T 1){(#(5, @)or(1) [“wa”L?(S},,Hl(N)) + ||€a||L2(SL},,H1(N))]

+2 6(8 + 20)[|&l1*} (3.51)

where d, = dist (01, \+a?), pis asin Lemma 3.2, and m = min{m € | —m?w? <sup (I)}

(as in Proposition 3.7).

Remark:
The choice of the interval I is somewhat flexible at this point. The only requirement now

is that it contain \ + o?. However, by making « smaller if necessary we can assume that I
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is any interval containing the eigenvalue A\. During the proof of exponential bounds, below,
we will require that I satisfy additional conditions. There it will be important that sup (I)
be less than the next threshold above A : sup (I) < —(m, — 1)?w? where m,, is the integer

characterized by the relation
—m2w? < A < —(m, — 1)°w?

At the conclusion of the proof of Theorem 2.2 it will also become apparent that sup (I) limits
how large of an exponential bound we can prove for 1. That is, we will be able to show that
e?™p € L2(SL, H'(Y)) for all « such that A+ o?> < sup(I). But because sup (I) can be
arbitrarily close to —(m, — 1)?w?, the condition on « is really that A+a? < —(m, —1)?w?,

as stated in Theorem 2.2

Proof of Proposition 3.8:

We begin by writing

~A=K-0-W. (3.52)
Then,
<7’|:K’ A])ga = <_2A —Z- VW)&&
= (A +(K=A=a’)e, + A+ %), + (-0,
—(W +2-VIW),,. (3.53)
Here we have separated out a (—A)¢, = | V&, ||* term because we will need this to compensate

for the negative term —o,(1)||V&,||* that will appear below in the estimate for (K —A—a?),,
via the use of Lemma 3.2.

The potential term in (3.53) we estimate as
[ (Wt VW), | = oan()]lal?, (3.54)

since | W+ xz-VW |— 0 as |z |— oo uniformly in ¢ (cf. Lemma 2.1) and supp (&,) is
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contained outside of a ball of radius R.
Letting I C be as in the statement of the Proposition, from Proposition 3.7 and Lemma

3.1 we have
(=0)e > M*W?|&1? — 3P| Eréall [|€all — 0r(1)l|€alI?, (3.55)

where, recall, m = min {m € | —m%*w? < sup (I)}.

Applying the usual functional calculus we derive the estimate (cf. equations (3.1) and

(3.2))

IBi&all = 1B/ —A—a) ™ (K= A—a?) &l
< (K - A o)l (3.56)

where d, = dist (I, \ + o?). ;From the Schwarz inequality we have that

(K —X—a?| < [I(K—X=a”)&lllléall- (3.57)

Thus,

GK, Aes > M+ +m2?)|&l? + [Vl
372 2
(4 DI — A - o)l Il

—or(1)[I& 1" (3.58)

From Lemma 3.2 we obtain

(K = A= a®)eall lEall < 18, @)0u(D)[[¢allfagss vy + Ealltass iy
+26(6 + 20) ||€a] % (3.59)

This, combined with (3.58) gives (3.51) O
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4 Proof of Theorem 2.2

Our first task here is to use the results of the previous section to show that if ¢, =

ev™p € L*(SL, HY(Y)), for some o > 0 where K1 = A1, then there exists a § > 0 such

that e, € L2(SL, H'(Y)).

4.1 Exponential Bounds

Using the relation

K% =K — |VH + iy,
we compute

Im (K" — )¢, A&,) = % 1

The middle commutator on the right hand side is equal to
i||VHP?, A] = i[|[V(h(r) +ar)[?, A]
= i0’[|[Vh|*, 4] + 2i6a[Vh -3, A]
= —28°KW'R"r — 26ah’r.
Let ¢}, and ¢} be constants (independent of R and ¢) such that

| (r) | < &R, 2R< r <3R
|R'(r) | < (BR+1), 3BR+1< r <2(3R+1)

(K, ADe, = (I VH [P, Ae. + Re(7aA)e,-

(4.2)

(4.4)

(recall the definition of h) and set ¢, = max (c}, c). Noting that h'(r) < 1 for all R, and

that h"(r) = 0 for 3R <r < 3R+ 1 and for r > 2(3R + 1), we have
BB | < 3cp,
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| B'r | < 3ep. (4.5)

Therefore,

(GIIVH, Ae,| < 6cx6(6 + a)l|€al|. (4.6)

Recall that (vzA)e, = 6{(ynA)e, +a{yA)e, withvy, = 3(VA-V +V-Vh)andy=31(z-V +V-2).

(2 (]
Since y = r 1/2Ar~1/2,

Re(yA),, = Re(r™'?Ar7'/2A),
= (rT2A T 4 Re(rT AT, Al
_ _ 1, _ _
= (r /2 A2 1/2>§a +§<7" 12 [A, [r 1/27 Al e,

= positive term + 0x(1)||¢a]%, (4.7)

so that
Re(rA)e, > —cR7Ml? > —cR™allZass mevy-

Writing v, = VA'r 1AV/H'r -1 one sees that the same estimate holds for Re (y,A)¢, -

Combining these results with Proposition 3.8 we obtain

I (K7 = Na, A&) > SO+ 02 + )l + 3 V]

3m2w?
—( + 1) {M((Sa a)or (1) (|€all72ss mrevy) + 1¥allizsy mevy) + 2005 + 204)||fa||2}

—(6 + a)or(D|€all72s1 m1ovy)
—6¢n8(8 + a)|&all? (4.8)

where d, = dist (01, X + o?). Now write this as

1 B 1
S A+ o + mPw?)||&all” + 5||V§a||2
m2w?
—( -

+ 1){M1(5a a)OR(l)||§a||%2(53,,H1(N)) + 10cpd (6 + 04)||§a||2}

3miw?
< Im (K7 — N)&a, Ala) + < Tt 1) 111(8; @)or(1)||DallFo(ss,mr(my)
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3m2w?
dy

< (EY = Moy Aa) | + ( + 1) (8, )or(W)[Yallzoy,mery — (49)

where p1 (0, @) = (8, @) + (6 + «). The term 10c,0(6 + @)||€a||* on the left hand side of the
inequality comes from combining the 6¢,0(6 + @)||&a]|* and 26(6 + 2a)||&,]|* terms on the
right hand side of (4.8) and estimating their sum from above, which preserves the inequality.

To proceed further we require the following estimate.

Lemma 4.1
(= Moy A&) | < o1+ B0+ 0) [l agss i ) (4.10)

Proof:
Recall from Lemma 3.1 that

(KH - )‘)ga = (_AXR)d)a — 2VXr - Vibo + 20V xR - 214 (4-11)

and that from the definition of A that A~ = 0 on supp (X%m)), m > 1. Hence, when restricted

to supp (X&), €a = Xatha and

N
AL, = _Z'(fﬂ -V + E)XRqﬁa

N
= —i(z - VXa)Va — iXaZ - Vo — iEXR%z- (4.12)

Using (4.11) and (4.12) and noting that | Ay, [< cR™%, | Vxz |[< cR™!, |z|< 2R on
supp (x,,), and so | -V, |< ¢, an application of the triangle and Schwarz inequalities then

leads to (4.10) O

Rewriting (4.9) and using (4.10) on the right hand side and using the inequality (1+a) <
u1(0, @), we obtain

1 B 1
S A+ o + mPw?)||&all” + 5||V§a||2
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3mw? 9 9
—(Z 4 1) {16, @)on()€allZaqsp,m ) + 106435 + 0)|6al?}
3m?w?
< M1(5, O[) [1 + ( d + 1) OR(l)] ||1/}a||%2(53”H1(N))- (413)

For sake of clarity we write this here as

3Im2w?

1
5<A+a2+v~n%2>||£a||2—( +1) 06+ &z + ¢ < g (414)

a

to distinguish the negative terms containing ||&,||? that are controlled by & alone (rather

than by R). We will come back to equation (4.14) in a moment.

We would like to point out that equation (4.13) is rather general in that it is valid for any
function &, of the form &, = ey, 1, = €*"1), § > 0, > 0, where v» € L%(SL, H'(Y)) is an
eigenfunction of K corresponding to the eigenvalue A. The numbers m and d,, are determined
by the interval I which, as was pointed out above in the remark following the statement of
Proposition 3.8, can be any interval containing A+ca? (or even just containing \; cf. the same
remark). This inequality ( equation (4.13) ) is fundamental in proving exponential bounds.
It is with this purpose in mind that we now proceed to determine just what properties we
require of I. Once this is done the numbers m and d, will be determined and then it remains

only to determine § and R (which up until now have been free parameters).

Our objective now is to show that for a suitable choice of the parameters m,é and R
(which we will be denoting by m,, () and R,) and interval I, there exists an a > 0

independent of € such that
left hand side of (413) Z a||§a||%2(5$,H1(N)). (415)

This will then imply that

3m2w?

sy < @@, [+ (25 1) o]y

< 0 (4.16)

||£a,Ro,6(a),5
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for all ¢ > 0. Note that the right hand side of this inequality is independent of . Subse-
quently (and as will be explained in detail below), from (4.16) and the monotone convergence
theorem it follows that the function X, e/ (es, = lim, o &y 5, s(a)e is in L2(SL, H' (V)

and therefore that e+ € L2(S1 H'(V)).

We proceed to demonstrate (4.15). First we determine what the integer m should be.
This in turn will determine the interval I via Proposition 3.7. Then §(«) and finally R, will
be chosen.

Recall from Proposition 3.8 that the only requirement on I up to this point has been
that A + a? € I which implies that sup (I) > A. Now we show that in order to obtain the
positivity estimate (4.15), sup (I) cannot be too large. More precisely, it must be below the
next threshold above A. This follows from Proposition 3.7, as we will presently describe.

To obtain (4.15) we require that the quantity A + m?w? appearing on the left hand side
of (4.13) be positive. Let m, to be the smallest integer m > 0 such that A +m?w? > 0. This
characterizes the location of A with respect to the thresholds &£ (K):

—m2w? < A < —(m, — 1)°w?

Note that m, must be the smallest such integer otherwise sup (/) < A and I will not contain
A Ifm, > 1, ie., if A < 0, then, referring to Proposition 3.7 with m, in place of m there
(see equations (3.41) and (3.42)), we see that the interval I must satisfy —m2w? < sup(I) <
—(m, — 1)*w?. Unlike sup (I), inf (I) can be freely specified. We take advantage of this fact
to simplify the quantity d, = dist (0I, A+a?). We will assume that inf(I) < A—(sup(I) —\)
so that d, = sup (I) —A—ca?. An interval I satisfying these conditions is illustrated in Figure
d.

In the case m, = 0, ie., A > 0, we do not need to estimate the spectral localization of &,
with respect to K because then \ + m?w? is positive with m = 0 and the a priori estimate
(—0?)¢, > 0 is enough. Thus, in this case no interval needs to be specified.

For A < 0 we have denoted the distance from XA + o? to sup (I) by d, . We will denote
the distance from \ to sup (I) by do: d, = sup (I) — A. Then, d, = d, — a>. Now we solve
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Figure 5: Location of the interval I.

the equation

3m2w? 1
( ”;"w + 1) 1068(3+0) = £(A+m? +a?) (4.17)

for 6 : see equation (4.14). Here ¢}, is given in (4.5). In the case A > 0 we have m, = 0. In
solving (4.17) we have determined how small § must be in order that the positive coefficient
dominates the negative coefficient of ||¢,]|* in (4.14). Denote by () the solution to (4.17).
That is,

—a+,/0” + 5t (A + miw? + o)
5(a) = Vot @ ; (4.18)

where a(a) = (M + 1). Note that §(«) > 0. ;From this it follows that for 6 < §(«),

3m2w? 1
( e 1) 10688 + )lIgall” < S0+ mZw? + a?) [l (4.19)

(o7

Having found ¢(a), we next determine how large R should be. Let
b =min (\ + m2w® + o?, 1). (4.20)

Referring to the left hand side of (4.13) and recalling that the functions 0gx(1) vanish as
R — oo, let R, be such that

2,2 1

(3”;:‘*’ + 1) (5(e), a)os(1) < b (4.21)

for all R > R,. R, is uniform in € > 0 and in ¢ for 6 < §(«) because the functions oz (1)
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are independent of € and ¢ and the function p; is an increasing function of § which is also
independent of €.

We have then from (4.19) and (4.21) that if R > R,, § < §(«) and m = m,, the left
side of (4.13) is bounded below by ib”{:a”%%s‘ﬁ,mw)) where b > 0 is given by (4.20), and
therefore that

[€all7zss vy < 407 (6, @) [1 + ( + 1) OR(l)] [YallZ2(ss, mi(vy) (4.22)

uniformly in € (cf. (4.16)). In particular,

1€ arod@)ellTzsy, mvyy < € < o0 (4.23)

for all € > 0 where c is the right hand side of (4.22) with é(«) and R, in place of § and R.
We point out again that the right hand side of (4.22) is independent of €.

Now, because hg, . and h'RO,6 increase pointwise to hg, and h'Ro respectively as € — 0,
| €aRod(@)e |2 =] X, €2 @MRo29h, |2 increases pointwise to | Xz, €@ Ro1hy [2 =| &4 py s(a)e=0 |
and | V& r, s(a) e |2 = e2(@hroe | S(a)hy, EXro%a + V(Xr,a) |* increases pointwise to

e20(@)hr, | 5(a)hIRO§3XRo¢a + V(Xro¥a) ‘2:‘ &,y 0(a),e=0 |2 as ¢ — 0, with both ||§a,Ro,5(a),s||2

and ||V&a, g, 6(a). ||* uniformly bounded in e by the right hand side of (4.22). The monotone
convergence theorem implies then that ||§a,Ro,5(a),5:0||%2(5$, HU(VY) is bounded above by the
right hand side of (4.22). From this it follows that ey € L?(S., H'(")) where o =
a+0(a).

We pause here to comment on the formula (4.22). We can write it as

3Im2w?

o€ gy gy < A6 (8(0), @) 1+ (S5 1) on(D)] e sy vy
(4.24)

where R, and 0(«) are as defined above. This inequality estimates the norm of the function
eleto(@)ry) restricted to the exterior of a ball of radius R, in ¥ by the norm of e*"¢. « is
an exponential bound for ¢ and o + §(«) is the new exponential bound for . Recall that

do = dist (OI, A+ o?) = sup (I) — (A + o?) where sup (I) can be chosen arbitrarily close to,
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but below, —(m, —1)?w?. Since d, — 0 as A+ a? — sup (I), we see that the right hand side
of (4.24) /oo as A + o — sup (). Therefore, it is consistent with our analysis that e* ¢

leaves L2(S., H'(V)) as A + a®> — —(m, — 1)*w?, although we are not able to prove this.

4.2 TIterative Step

For a given o > 0 the analysis of the preceding subsection defined a function §(«) > 0 which
is the incremental exponential bound for ¢, = e®"1). That is, we showed that e*®7, €
L2(SL, H'(M)). We use this abstract set up to iterate this procedure. For example, at the
next iteration we start with the function ¢,,, = €*"1) where a; = a+0(a) and find §(a;) > 0
such that e*®Vryp, € L2(S}, H'(™)) by considering the regularized function &,, = e’"",, .
In the end we will arrive at the inequality (4.13) and subsequently will be lead to the equation
(4.17) with «; in place of « in these two equations. Keep in mind that the interval I has
been fixed at the start, that is, it is the same for each iteration so that sup (I) and m, are

fixed (see the discussion preceding equation (4.17)). Denote by ® the mapping
O: a— a+d(w) (4.25)

where () is defined by (4.18). Then ®(0) is the exponential bound we find for ¢ after the
first iteration. More generally, ®"(0) is the exponential bound for ¢ after n iterations of the

above procedure.

Lemma 4.2 Ifm, # 0 (m, as in (4.18)), then lim,,_, (<I>"(0))2 = d,, where d, = sup () —
A If my, =0 then lim, o, ®"(0) = co.

Proof:

Recall that the solution §(«) to (4.17) is given by

—a+ \/oz2 + 0500 (A + m2w? + a?)
i(a) = 5

where a(a) = (% +1) and d, = dist (O, A + o?) =sup (I) — A — o = d, — a®. Setting
a, = ®*(0), suppose that m, # 0 and that lim, ,, &> < d,. This implies that a(ay,)*
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is bounded away from 0 for all n (since d,, will be bounded away from zero for all n). It

follows then that

ap = CVn—l'i'é(an—l)

P R S 22 + o
_ Qp—1 + \/an—l + 2Ocha(042n—1) ()\ + MW + an—l) > q, 1+c (426)

where ¢ > 0 is independent of n. Hence, a,, — oo which contradicts the assumption that
lim,, ,o, @®> < d,. On the other hand, lim, ,, o cannot exceed d, because §(a,) — 0 as
a? — d,. Thus, lim, ;. @2 = d,.

If m, = 0 (that is, if A > 0), then

—Qp-1 + \/017%_1 + 201% ()‘ + a’?z—l)
6(an) = 9

2 X
S —On-1 14/ 1 T 55

2

> c >0

for all n and hence ®"(0) > nc O

If A < 0, the results of Lemma 4.2 imply that by iterating the procedure described in
Section 4.1, ey € L*(SL, H'(Y)) for all a such that o? < d, = sup (I) — \. Since sup (/)
can be arbitrarily close to, but below, —(m,—1)?w?, we have then that e’y € L*(SL, H*(Y))
for all @ such that A + a? < —(m? — 1)%w?. If A > 0 then m, = 0 so that ®"(0) — oo. Thus
in this case we can show that e®"y € L?(S}, H' (")) for all o. This completes the proof of

Theorem 2.2 0O

5 Constraints on Periods: Proof of Theorem 1.1

5.1 Absence of positive eigenvalues

We first prove a kind of unique continuation theorem at infinity for eigenfunctions of the

operator K which we will use in the proof of Theorem 1.1. We show that if an eigenfunction
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has arbitrarily fast exponential decay (in the L? sense) then in fact the function is zero. A

consequence of this, when combined with Theorem 2.2, is that K has no positive eigenvalues.

Theorem 5.1 Under the definitions and hypothesis of Theorem 2.2, if K = A where
e p € L*(SL, HY(N)) for all o, then v = 0.

Our proof follows that of [HS]. We will obtain a contradiction by assuming that ¢ # 0.
We begin by fixing a such that

Lo fers L rer (5.1)

Let g(r) < 7, ¢'(r) > 0 with g(r) = r for 7 > a and set ¢, = e*9)||e®9s)||"'. Then
bo € L2(SE, HY(N)) for all o and

Lo Veal = Nyl [ [ ers) |y
Sy Jr<a Sy Jr<a
ey Y
S, Jr<a
llesy]| [ TP
St Jr>2a
— 6720@”60‘9'@5”72/1/ e4aa | ¢ |2
So Jr>2a

ef2aa||6ag¢||f2/1 / eZar | ¢ |2
SL Jr>2a
< e, (5.2)

IN

IN

IN

We will show that the function ¢, is an approximate eigenfunction of K with eigenvalue
A+ a? . Therefore, (K)y, ~ A+ o?. On the other hand, as an approximate eigenfunction
the virial theorem implies that the expectation value (i[K, A])4, will be small. The fact that

(K )4, eventually dominates (i[K, Al)y, as a becomes large will lead to a contradiction.

Lemma 5.2

(i), A]),, < c102e2 + ;. (5.3)
for some constant ¢; (not necessarily positive) and all o > 0.
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Proof:

Set

K, = e¥Ke™ = K-ad®|Vygl?+iay, (5.4)

1
Yo = g(Vg-V—i-V-Vg). (5.5)
Then

(K, Al),, = 2Im (Ko = Néa, Ada) + 0’ (il| Vg [, A]) = 2aRe(1,4), .  (5.6)

da
We have
(Ko =A)¢a = 0, (5.7)
(Vg Ay, = [ [ ~@rgg")|éal?< o, (58)
Pa Sy Jr<a
Re (vyA),, = /53, [V 2r7'g' | z-Véo > + bounded term, (5.9)
where the integral on the right in the last line is positive O
Lemma 5.3
(K)y, > A+a’(1—e) (5.10)
for all o > 0.
Proof:
<K>¢a = (Ka)qﬁa + Ck2 <| Vg |2>¢a — a<i79)¢a. (511)
We have
(Ka)po = A (5.12)
1V Pos = [ [ 10al? 2 (1—e), (5.13)
a<i79>¢a = Im<Ka>¢a = 0 O (5]‘4)
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Proof of Theorem 5.1:

Subtracting (5.10) from (5.3) we obtain

(i[K, A g — (K)py = (=07 —A—2-VIW —=W),,

< o (016_20‘“ - (1- 6_20‘“)) — A+ acq. (5.15)

As a — oo the right hand side of the inequality tends to —oc but the left side is bounded
from below (—97 — A is a positive operator while z-VW +W is bounded). This contradiction

completes the proof of Theorem 5.1 O

During the proof of Theorem 1.1 we will require a slightly modified version of Theorem
5.1, the difference being with the potential W. We will require a unique continuation theorem
for operators K of the form K = K,+11,,V1II,, where V is a real-valued function such that V'
and z-VV are bounded and vanish as |z| — oo uniformly in ¢, just like the potentials W,,, and
for eigenfunctions of the form ¢ = II,,%. That is, if K1) = A\ and e*"¢p € L2(SL, H'(Y)) for
all o, then 1) = 0. That this is true follows from the fact that the projections II,, commute
with functions of x and with derivatives with respect to x. Therefore, the estimates of

Lemmas 5.2 and 5.3 hold for K and ¢, where @, is defined in an analogous way as was ¢,.

5.2 Proof of Theorem 1.1

Preparatory discussion

The spectrum of K depends on the frequency w. In particular, the thresholds £(K) =
{-m?w?; m € } depend on w. Since we are considering the eigenvalue —x = —f'(0),
(K¢ = —kp), its position with respect to the thresholds will change as w changes. As w
increases fewer and fewer thresholds will lie above the point —. For w? > f’(0) the only
threshold above —k is zero (see Figure 4). It is the presence of the zero threshold that

prevents us from proving that the exponential bound « for ¢ is arbitrarily large and hence
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that ¢ = 0 (by Theorem 5.1). To prove Theorem 1.1, then, we first remove the this threshold
in the following way.

Each threshold corresponds to a point of the spectrum of d7. Thus, by projecting-out
spectral subspaces ; we can remove points from the spectrum of 8?. Consequently, we
can remove thresholds from K. (However, then we will be considering K restricted to the
compliment of these subspaces.) Thus, in the case when w? > f(0), by projecting-out
the subspace ; we can remove the one and only threshold above —k. In removing the zero
threshold we also remove the zero modes from the set of periodic functions we are considering
so that now any conclusions drawn from this analysis will only be about the time-dependent

part of a function.

Proof of Theorem 1.1:

Let g = Py and ¢ = ¢ — ¢o. We will show that if w? > f/(0) then ¢ = 0. This implies
then that ¢ = (g, i.e., ¢ is independent of time.

Project 92¢ — Ap + f(p) = 0 onto
0= Py(0}0 — Ao+ f(9)) = Ko + Pof (¢)- (5.16)
,From the identity

Flu+v) = F(u) + f(v) + /O1 /01 F(au + bv) dadb, (5.17)

we see that we can write

f(@) = flpo+ @) = f(po) + f(@) + 0o @ g(00, @) (5.18)

where g(u,v) = [y J3 f"(au + bv) dadb. Since Pyf(py) = 0 we have that

Pof () = Pof (90 + @) = Po(f (0o + @) — f(0))- (5.19)
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We remark here that the property Py f (@) = 0 means that the branch [0, co) of the spectrum
of K is uncoupled to the other branches (we will discuss this again below).

Combining (5.18) and (5.19) we obtain

Pof(¢) = Po(f(9)+ 2P g(0,?))
f(®)

= P0< ()5 -+ @o g(QD(), @)) 0@ (note that P()@ = (,5)
= (U+k)p, (5.20)
where
U= P,V P, V——@— 5 = (0 5.21
=RoVoly, Vo =77 K+ o g(pe, @), &= f(0). (5.21)
Thus,
Kp = —kp with K = K, +U. (5.22)

Because U is bounded and symmetric, K is self-adjoint.

Our task now is to show that e®"¢ € L%(SL, H*(Y)) for all a. As in Theorem 2.2, set
£o = Xr€Mg, Yo = €@, where 6 > 0 and a > 0. Let h(r) be as described in Section 2,
and H(r) = dh(r) + ar. Then,

KHE — eH(T)Ig—efH(r) — eH(r)KoefH(r) + U

= K—|VH?+ivy (5.23)
where v, = 1(VH -V + V- VH) as before. Since Py¢ = 0 we have the a priori estimate
(~00)e, > w’ll&ll™ (5.24)

The estimate (5.24) is all we require to prove exponential bounds for ¢. This is in contrast to
the more general situation encountered in Theorem 2.2 where a microlocalization of (—9})e,

was used.
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Proceeding now as in the proof of Theorem 2.2,
_ _ _ 1. - 1,
Im (K" + k)&, Ala) = (K, Allg, — 50l VH [°, A, + Re(yud)e,  (5:25)
(cf. equation (4.2)). We compute:

(K, A)g, = (—A)g +(K+r—0a”z +{(—k+a®) +(—07);,
— (Vo4 -VVp)e., (5.26)

(cf. Proposition 3.8). To obtain the expectation value (V; + x - VVj)z from (U +x-VU)g,
we have used the fact that P, commutes with functions of z and derivatives with respect to

z . This implies that
iU, Al = iP[V,, AlPy = Po(z-VV,) Py (5.27)
and that Py&, = &,. ;From this we see that
(i[U, Al)g, = (Po(z-VVy)Po)g, = (z-VVp)e, (5.28)

and

e, = Vole.- (5.29)

Using again the commutativity of Py with functions of x, we have

(K" +K)ta = e"Oxu(K+5)p + "V, xa]@
= e"[-A, xza|p
= (—Axz)Va — 2V Xz - Vb + 20V X - 294. (5.30)

Because of this the estimates of Lemmas 3.2 and 4.1 remain valid;

1K + 5~ a)all < (6, 0)0n (D) [1Flzeqss vy + IEalluzcss, ey
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+ 25(8 + 20a)||&1° (5.31)

(K" + K)&a, Ala)l < c(1+ R+ )|Yallzz(ss,mvy): (5.32)

Here p(d, ) is as in Lemma 3.2. jFrom the first inequality we estimate the expectation

value (K + k — a?)g ;

[(K+r—a%g | < [(K+k—a)lllEll

N

< (8, 0)0x(1) [Il€all 3251 1 vy + [BallFoiss vy
+ 26(6 + 20)||€41% (5.33)

The potential V; vanishes as |z |— oo uniformly in time. We also require that - VV,
vanish in the same manner. That this is true for @ — k follows from the same arguments

presented in Lemma 2.1 for W,,. For the other terms in V3, ¢,g(¢,, @), we note that since

Va(po, @) = Vo gulwo, @)+ V@ gu(wo, ), (5.34)

where g, and g, denote partial derivatives, and x - Vo and z - V@ vanish uniformly in time
as |z |— oo, it is enough that g, and g, be bounded in a neighborhood of (0,0). But this is

clear from the formulae

gu(u,v) = /1 /1 af® (au + bv) dadb, (5.35)
o
go(u,v) = /0 /0 bf® (au + bv) dadb. (5.36)

Therefore,

(Ve +2-VVole,| < on(D)]Gll” (5.37)

Combining this with (5.24), (5.26), and (5.33) we obtain

(ilK, A, > (—r+0o” + )&l + IVl

— 118, 0)0r (1) [l&al 325y i1 (vy) + l1¥allF2qsy vy
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—26(8 + 20) ||€al1*- (5.38)
Using this in (5.25) along with the estimates

LGIVHE, A)e| = [SGIVAR ADe, + balilh-2, A,

< 3cpd (0 + a)fléall® (5.39)
(cf. (4.3) and following) and
Re(ysA)g, = 6 Re(mA)g, + aRe(yA),, > —(8+a)or(Dlléallizss vy  (5.40)
(cf. (4.7) and following), we obtain

Im (K + ), A& > 5(—x+ 0 + )|l + S VEIP
— (8, @)or(1) [lall?2(ss vy + 1 PallFasy,mvy]
— (6 + @)or(1)|€allT2(sy, a1 vy
—6¢,6(6 + ) ||| (5.41)

This is analogous to equation (4.8) obtained in the proof of Theorem Proceeding as there

and using (5.32) we have,

1 T T

5(—*6 +o? +w?)||&l* + §||Vfa||2
—111.(6, )0 (D[l 25t a2 (v
—10¢,6(8 + a)||€al?

< (6, @) (1 + 0r() 1l Fagss vy (5.42)
(cf. (4.13)). Since w? > f'(0) =k, —k + w? > 0. Thus, we solve

1
10cp(0 + ) = g(—m + w?® + a?) (5.43)

ol



for § (see the discussion following (4.17)), the solution of which we will denote by 6(«).
Arguing as in Lemma 4.2, with m, = 0, ®"(0) — oo where ® is the map ® : o — a+ ().
By applying the same iteration argument described at the end of Section 4.2 we can show that
e p € L2(SL, HY(Y)) for all . The unique continuation theorem for K (see the paragraph
at the end of section 5.1) then implies that ¢ = 0. This completes the proof of Theorem 1.1
a.

Discussion:

One may attempt a similar analysis on I1,,_;¢ for m > 1. That is, perhaps one can prove
that if m?w? > f/(0) then II,,_;¢ = 0. However, this would require a very special, and hence
nongeneric, relationship between the solution and nonlinearity. For, applying the method

used above in the proof of Theorem 1.1, we project NLW onto =, to derive an equation for

II,,—1¢. Let us define

(10<m = HTTL*I ) SDZW = ﬁmfl

and set II =11, 1. Then,
0=TI(0p— Ap+ [(9)) = Kos + TLf (). (5.44)
We would like to form a potential from the term ITf(p). Writing
F(@) = f(pam + @2m) = f(0cn) + F(02m) + Pcnbom §(Pcms P2m); (5.45)

we have

Mf(p) = T(f(an+Psn) = F(Pen)) + T (Pn)
= ﬁV@ﬁ + ﬁf(g0<m)

= Ugs, +11f(0cn) (5.46)
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where here

Vo= f(p>n) — K+ Qem §(Pimy Osm), &= f(0). (5.47)

>m

But now the term IIf(p.,.) may be nonzero because, although ¢_,, has no modes > m,
(<) may contain nonzero modes > m. That is, f may generate those modes from the
lower modes of . For I1f(¢.,.) to vanish requires a special relationship among the modes
of ¢, a relationship determined by the structure of f. In the case m = 1 no such special
relationship is needed: Py f(Pyp) is always zero because f cannot generate time dependent
modes from a time independent function. In terms of the spectrum of K, f couples the
branches [—m?w?, 00), m > 0 to one another while the zero branch remains uncoupled.

Going back to (5.44) and using (5.46), we see that the equation satisfied by ¢.,, is in fact

Kopsm +Ups, = —IIf(er)- (5.48)

We can think of —IIf(¢.,,) as a forcing term: the system is not closed. The case considered
in Theorem 1.1 (m = 1) is then special in that projecting NLW onto ; results in a closed
dynamical system (Pyf (@) = 0).

It is worth remarking that in the special case when Py = 0 for all |k| < m then,
because f(0) =0, IIf(¢.,) =0 and we do have a closed system. In this case the branches
[—k?w?, 00), |k| < m, of the spectrum of K are decoupled from the higher branches so that

it is possible to project them out.

5.3 A nonexistence result

The proof of Theorem 5.1 relied only on the fact that e®™yp € L*(SL, H*(Y)) for all a > 0.
By considering the eigenvalue A = —f’(0) and corresponding eigenfunction ¢ where ¢ is a

27 /w -periodic solution of NLW, that theorem implies the following.

Theorem 5.5 Let ¢ be a 2 /w-periodic solution of NLW on D,. If e* o € L*(SL, H(V))
for all o, then ¢ = 0.

For example, periodic solutions from D, cannot decay like e~ for any « > 0, nor can

they have compact spatial support.
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6 Appendix : Operator calculus

We outline here a convenient operator calculus first introduced in [Hel,Sj6] for functions

g(H) of self-adjoint operators based on the representation

! [~ 2" 0:3() dudo (A1)

Q(H):g N

where z = u + iv and 0; = 0, + 10,. Here g is a complex-valued function in C°() and § an
almost analytic extension of g into the complex plane. By almost analytic we mean that g

satisfies the Cauchy-Riemann equations on :
0:9(2) =0 for z€.
We abbreviate (A1) by writing

g(H) = [ di(z) (H—2) " di() = zi 5(2) dudb. (42)

™

For example, we can construct an almost analytic extension of g by the formula

i(2) = (9(u) + ivg (u)) x(2) (43)

where x € C°() with x =1 on some complex neighborhood of supp (g).

Lemma Al If g € C°() and § is an almost analytic extension of g as given above, then

g(H) is given by (A1).

Proof:
0:¢ has compact support and vanishes on the real axis, so that | 0;g(z) |< const |v |.
Also, || (H —2)7"|| <|v|™" so that the integral (A1) exists as the norm limit of Riemann

sums. It is enough now to show that
o.t)= [ dae) (-2 te (44)
v|>€

o4



converges pointwise to ¢(t) as ¢ \, 0. First note that, since d;(t — 2)™* = 0 for z & ,
9:9(2)(z —t) ' =0, (g(z)(z - t)fl). Integrating by parts in u and v,

g:(t) = 2i Glu+iv)(u+iv—1t) " ’=2° du. (A5)
m

Expanding §(u + 1) = g(u) £ ieg'(u) + O(e?) we find,

glutiv)(ukiv=t) = = Loty = Lo S0

wtrre 7 Vu—prre T ) (49

The last two terms are bounded and vanish pointwise for u # t as ¢ — 0. Therefore,

lim 0 g.(t) = lim \,0 —/g du = g(t) O (A7)

) + g2
Commutator Estimates

Suppose H and A are unbounded self-adjoint operators on a Hilbert space H. If [H, A]
is H-bounded, then for ¢ € H,

I, AJ(H —2) "¢l < allH(H=2) "9+l (H~2)"9], ab>0,
all+z (H —2)" 9| + 0] (H —2) " 4

allpll + (12 [ +0) || (H — 2)7 9|

allgll + (12 | +b) [ v [7" (||

c(l+ [z ) [v[ ¥l

AN VAN |

IN

That is,
I[H, A](H —2) " || < const (1+ |z ) |v | (48)

In particular, this holds when [H, A] is bounded. Thus, if g € C°() then the representation
A= [ dg(z U, AJ(H=2) (49)
requires an almost analytic extension § that satisfies |9;5(z)| < constv=2. To this end let
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X € C°() with x = 1 on some open interval containing 0. We define an almost analytic

extension of g by the formula

() = x(0/ () Y- g9 () 7] (410)

where (u) = (1 + u?)'/2. Then,

() = Y0/ (- ) St G e/ G
= a(z) + b(2).

We see that both a(z) and b(z) are compactly supported, a(z) away from v = 0 (since
X (t) = 0 in a neighborhood of 0). Furthermore, a(z) is bounded and | b(z) |< constv?.
Thus, |0;§(2) |< const v?.
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