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1. Introduction

In this paper we prove asymptotic completeness for N -particle long-range systems

—27N=2  Previously asymp-

with potentials vanishing at infinity as O(|z|™#") with g >1
totic completeness for long-range quantum systems for 2 particles and various classes of
potentials was proven by several authors (see [Sig2] for references) and for 3 particles with
pair interactions vanishing at oo as O(|z|™") with p > /3—1,in [En2] (see also [SigSof5]
for a different proof and see [Mo] for another approach). Asymptotic completeness for N
particle Schrodinger operators with two generations of thresholds (this, in particular, in-

cludes general four particle operators) and interacting via pair potentials vanishing at oo

as O(|z]™!) (Coulomb-type potentials) was proven in [SigSof6].

Our approach consists of two steps. On the first step we use asymptotic clustering to
reduce the problem involving an (N + 1) -particle Schrodinger operator to that involving
a time-dependent operator of the form H(t) = H + W(«,t), where H is an N -particle
Schrodinger operator and W(x,t) is a real potential obeying [0°W (z,t)| < Co(1 + |2| +
|t|)_”_|a| . The asymptotic clustering states roughly that as ¢ — +00 a system in question
disintegrates into non-interacting, and therefore freely moving, subsystems. In the short-
range case (> 1), W isin L'(dt) and therefore can be dropped. Using this one shows
that asymptotic clustering for non-threshold energies implies asymptotic completeness. In
the long-range case W(x,t) cannot be dropped. Since the energy is not conserved for
H(t), dealing with it poses a number of subtle problems. H(t) is handled on the second
step. Omn this step we use a fine microlocal analysis on ranges of singular asymptotic
projections in order to reduce the problem of controlling the evolution U(t) generated by

H(t) to the one of controlling the evolution generated by H .

To explain this approach in more precise terms we introduce some notation. For a

family B = {B;,t > 0} of self-adjoint operators and a Borel set A with |[A| > 0, we
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define
FI(B) = s— lim U(t)*Fa(B)U(t) ,

t5+o00
where Fa()\) is a smoothed out characteristic function of A (see the end of this intro-
duction). For |A| =0 we define F{(B) by a limiting procedure (see section 4). Denote
v = {'f—'} . Let 7 be the threshold set of H. 7 and {0} are the singular, from the point
of view of propagation, sets for H and |f—| , respectively, and Ran F{'E}(v) CRan Ff(H).
We show that U(t) is asymptotically clustering on (Rg )1, where RS = Ran F{'E}(v),
i.e. it is reduced to the evolutions generated by (time-dependent) Hamiltonians of non-
interacting subsystems. This yields the reduction in the number of particles. Furthermore,
we show that on RS’ , U(t), modulo uniformly in ¢ small and asymptotically clustering
terms, concentrates in the set {|z| < t*} with a < p. This allows one to pass from
U(t) to the evolution Upy(t) generated by Ho(t) = H + W(0,t), i.e. one is back to a
time-independent Hamiltonian. The case t — —oc is treated similarly.

To sum up, on the second step one characterizes subspaces of balistic and subbalis-
tic propagation in terms of singular sets for (or the spectra of) appropriate asymptotic
observables.

The method described above is a close extension of the method of [SigSof6]. Asymp-
totic cut-offs FY(H) were introduced in [SigSof5], while cut-offs related to FX(v), in
[Gr]. In the present context FJ (v) can be replaced by asymptotic projections F(K)

for K = {A} (see e.g. sect. 7 and supplement of [SigSof6]). In fact, Fif (v) = F (K).

t {o} {o}
F{(K) were used implicitly in [SigSof6] (see Introduction and sect. 5, especially eqns (5.10)
and (5.13)). Asymptotic observables in the context of the QM scattering theory were first
used in [Enl]. For recent important results see [Der2, En3]. Our treatment of asymptotic
clustering follows [SigSof6, GerDer|, which extend earlier results of [SigSof3]. A beautiful
proof of key estimates of [SigSof3] was given in [Gr|. Important ideas introduced in this

proof are used in the present paper (see Appendix). Our estimates on Rg’ are essentially

a simplified version of estimates of [SigSof6]. The latter paper proves the asymptotic clus-
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tering on (Rig)J‘ Ve > 0 and the reduction to a time-independent Schrodinger operator,

on Rig for ¢ > 0 sufficiently small. Here R;’:a = Ran F*(H) N Ran F[tg €](K)- An

important step of taking ¢ = 0, i.e. restricting not only to the singular subset 7 of H ,
but also to the singular subset {0} of é (or of % ), and proving the sharp localization
of z on this subspace directly (rather than using the sharp localization of H as was done
in [SigSof6]), was suggested by [Der3]. These ideas inspired the result of theorem 5.1,
extending theorem 13.2 of [SigSof6].

In this paper we use the following convention for cut-off functions. In general, F(\ €
), for a Borel set  C R, stands for a smoothed out characteristic function of €. More

precisely, let w be a smooth function on R, supported in |A| < 2 and satisfying w > 0,

[w=1 and w(0)=1. Let ws(\) = 5—1w(§) L If |Q] > 0, then we set
FAeQ) = xa*ws,
where Yq is the characteristic function of © and § < |Q|. Thus we have
FAeQ)+FAe(R\Q) = 1.

Moreover, we set for any a € R

F(A=a) = §F'(A>a)
- (557

The parameter ! will be called the sharpness of the cut-off function in question. Let ||

denote the Lebesgue measure of @ C R. Then for F(A > A\g) the sharpness is reciprocal

to § = |[supp F'(A > Ao)| and similarly for F(A < Ag). Symbol (z) stands for a smooth

function equal to |z| for |¢| > 1 and not less than } for |#| < 1. Note that (z) is
positive homogeneous of degree 1 for |¢| > 1 and is invertible. The main statements are
formulated for ¢+ — oo, while all the other statements as well as the proofs are given

for t — oo omly. O;(R™'), where R is either (z)* or (t)*, stands for an operator s.t.

4



for every s € [0,1] and for every k=0,...,i, R (—A+1)"*0;(R7Y)(—A +1)"iTkRl=s

extends to a bounded operator.

Acknowledgement. It is a pleasure to thank J. Derezinski for communicating his ideas
on asymptotic completeness. The material of the Appendix was worked out while the first
author was visiting ETH-Zurich in the fall of 1989, while the rest of the proof in this
paper was done during the first author’s stay in Aarhus and the second author’s stay at
ETH-Zurich in July of 1991. The authors are grateful to J. Frohlich and W. Hunziker and

to E. Balslev and A. Jensen for their hospitality.

2. Hamiltonians and Kinematics

Consider an N -body system in the physical space R”. The configuration space in the

center-of-mass frame is ([SS])
X = {z € RV |Zmz; = 0} (2.1)

with the inner product < z,y >= 2Xm;z; -y; . Here m; > 0 are masses of the particles

in question. The Schrodinger operator of such a system is
H=-A+V(z) on L*X).

Here A is the Laplacian on X and V(z) = EV;;(2; — z;), where (¢j) runs through
all the pairs satisfying ¢ < j. We assume that the potentials V;; are real and obey:
Vij(y) are A, -compact. Under this condition Kato theorem applies and H is self-adjoint
on D(H) = D(A) (see e.g. [CFKS]). Moreover, if V;; are Kato potentials, i.e. Vj; €
L"(R") + (LOO(R”))E, where r > £ if v >4 and r =2 if v <3, and the subscript ¢
indicates that the L°°-component can be taken arbitrarily small, then V;; are Laplacian
compact (see e.g. [CFKS]).
We introduce the conditions on the potentials which are used in this paper.

(A)  |y|"¥110%Vi;(y)| are A, -compact for |3] =0,1,2.
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(B) Thereis R >0 s.t. for |y| > R, Vi; € C? and obey [0°V(y)| < C|y|=*~1#l with
I3 =1,2 and p >0.
In our analysis we will use an induction in number of particles. We will see later that
already at the first inductive step one arrives at time-dependent Schrodinger operators of

the form

H(t)= H+W(t), (2.2)

where H is a self-adjoint N particle Schrodinger operator satisfying restrictions (A)
and (B) and W(t) is the multiplication operator by a real and smooth function W(x,t)
obeying

88,y W) < Cull+ [t) 10 (23

with g > 0 the same, though it is not necessary, as in condition (B). Thus, guided
by the consideration of induction convenience, we consider in this paper time-dependent
Schrodinger operators described above. By U(t) we denote the evolution operator gener-

ated by H(t), i.e. the solution to the Cauchy problem

i%U@::H@U@ and U(0) = id . (2.4)

We denote ¢y = U(t)y .

The momentum space X', which is dual to X , is identified with

1
X' = {k € R"YN|Zk; = 0} with the inner product < k,u >= Erki TN (2.5)

m;
Thus |k|*> is the symbol of —A and —A = |p|>. Using the natural bilinear form on
X x X', <z, k >=Xz; - k;, we introduce self-adjoint operators playing a prominent role

in our analysis:

1
A= L(p.a)+ (o) (2.6)
the generator of dilations, and
1 R X
v = §(<Pa$> +(%,p)) (2.7)



the operator associated with the angle between the velocity and coordinate. Here & =

V({z)). Note that
v = ilH.(z)] . (2.8)

Finally, we denote En = F(H € A) for a Borel set A C R.

3. Time-Dependent Observables

In this section we outline some technical ideas used in this paper. By the time-
dependent observable we usually mean a norm-differentiable family, ¢(¢), of self-adjoint
bounded operators, which map D(H) into itself. In those few cases when we use un-

bounded operators it is clear from the construction how to manipulate them. Define

Do) = 220 it o).

We call this operation the Heisenberg derivative. (It is similar to the Lagrange derivative

in Classical Mechanics.) Its property which warranted its introduction is %(gﬁ(t)ﬁ =

(Do(t))e, where (o(t))r = (P(t)he,¢¢). We will use the following refinement of this

relation

%<EA¢(t)EA>t = (EAD(t)Ea) + O(t7'7H) . (3.1)

It follows if we observe that estimate (2.3) on W(x,t) and an elementary commutator

estimate of [SigSof4, lemma A.1(i)] imply that
[Ba, W(z,t)] = 0(t)~"7") . (3.2)
We will seek estimates of the form
EaDG(t)Ex > 8EAF(t)*Ea — > Fi(t)?, (3.3)
where § >0 and F and F; are time-dependent observables with F; satisfying
/Oo | Fs(t)de||?dt < C||ob||* for all i (3.4)
0

and for all ¢ € Ran EA . Then the desired propagation estimate is given in the following:
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Lemma 3.1. Let (3.3)-(3.4) hold. Let either (a) Ea¢(t)Ea be bounded uniformly in t
or (b) Ean¢(t)Ea < 0. Then either

@ [ IFOEsea < Ol or ) [ IFOEssIE < ~(6(0)Ba, Bav)
’ ’ (3.5)
for all ¥ € L*.
Proof. Integrating eqn (3.1) in ¢ from 0 to T, we obtain
T
| (BaDo(tEa)at = (EsO(TIEa)r — (Badl0)Ea)o (3.6)

Using inequalities (3.3) and (3.4) to estimate the Lh.s. below and using the conditions of

this lemma to estimate the r.h.s. above, we arrive at (3.5). O

The most difficult task in this enterprise is to choose appropriate observables ¢(t)
and to prove for them estimates of the form (3.3)—(3.4). In this task we are aided by
the following technical devices borrowed from [SigSof4] (see also [SigSof3,6]). We consider
smooth functions f obeying

/OO |s|"f(s)|ds < oo (3.7)

for some positive integer n. It is shown in [SigSof4, lemma 1.1] (see also [SigSofl,3,6])
that for f obeying (3.7) with n = 2 and a self-adjoint operator B s.t. B,[B,H] and
[B, [B,H]] are H -bounded and [B, [B,H]] = 01(R™?%), where R is either (z)* or t*,

the following relation holds
[H.f(B)] = [H,B]f'(B)+ 0:(R™?) (3.8)

Moreover, let ¢(x) obey |0%¢(z)| < CoR71?17> for |a| < 2, where A > 0. Then (see
[SigSofl, lemmas A.4 and A.5] and also [SigSof3,4])

[F().0x)] = O™, (3.9)



alf(v),9(H/o)] = O((z)™") (3.10)
and

olé(x),g(H/o)] = OR™'?), (3.11)

where the r.h.s.’s are uniform in o .

Below we will use products of cut-off functions in v, 7 and H . Relations (3.9)-(3.11)
render the order of the factors in such products immaterial for our purposes. Moreover,
any such product differs by O(¢t7°) or by O({x)™*) with s > 0 from its self-adjoint
symmetric rearrangement, e.g. by placing square roots of cut-off functions symmetrically
as in

(z) (z)

F9(35) = F)29(H ()= + 06

etc. Having this in mind we will manipulate with such products as if they are symmetrically
rearranged. Thus, e.g. an inequality between two such products means, in fact, the
inequality between their symmetrical rearrangements modulo O(t™%) or O({x)™*), s > 0.

For a linear subspace R of L?*(X) and a family ¢(t) of bounded operators we define

iff the following inequality

i d
[ reweeny < clel?

holds for every ¢ € R. Here C is independent of individual ¢ ’s (but is dependent on

R) and, recall, ¢, = U(t)y .



4. Asymptotic Observables

In this section we introduce asymptotic observables of interest and singular projections
associated with them. We begin with some definitions. Let 7 be the threshold set of H
(see section 8 for the precise definition). An important fact about it is that it is a closure
of a discrete and bounded subset of R. In fact, it has a finite number (< N — 1) of

generations of accumulation points. For 4 C R we set
Sa={(E-N:|Xer, E€cA A< E}. (4.1)

Forany K > 0,let P® be the orthogonal projection on the span of K eigenfunctions
of H obeying

PE P as K — oo, (4.2)

strongly. Here P is the orthogonal projection on the pure point spectrum subspace of H .
It is shown in [SigSofl, Prop. 7.2 and its proof] with extensions formulated and discussed
in [SigSof6, section 7] that for any discrete and compact set A C R and any § € ¥ 4 there

are 0o >0, K >0 and 6 > 0 s.t.

6 Y 1
Z 5t (52 1)@“ (4.3)
1

for any A D A with |A| < g and any F(v/d > 1) satisfying |suppF’<§ > 1>| <

8]0]7' . Here C is independent of § and (z) and
i E K] E
R_F<5 1>PF<5 1) (4.4)

In [SigSofl, prop. 7.2] eqn (4.3) is formulated for A = {E} away from the thresholds
and eigenvalues of H , however the proof given there holds in the framework of (4.3). We

sketch here its simplified version. [SigSofl, thm 6.1 (the channel expansion theorem) and
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lemma 6.5] imply that for any ¢ > 0 and any discrete and compact A C R there are

0o >0 and K >0 s.t. forany 4 >0
EAi[Hv A]EA Z (9(“47 5) - 5) (EA)2
2|A
- CEAF(|7| <54 %) Ean — CEAPKEA
for any interval A D A with |A| < §y (see also [SigSof6, section 7]). Here

0(A,6) = 2min{E—-X|Aer, E€c A E—-\>6}.
If 0 ¢ X4, then, since Y 4 is a discrete set,
6(A,8) > 26° .

Combining the last inequalities with (3.8) (with B =~ and R = (x)) and with

1 1
i[H,5] = i[H,A] = 29%) —— + O({z) "
[H, ] <x>( [H, A] —2v7) o +O0({x) )

and using commutation relations (3.10) and the localization property of F'(y/d > 1), one

arrives at (4.3).
We begin with a result parallel to that of [SigSof4, thm 4.1] on existence of asymptotic

energy cut-offs:

Theorem 4.1. Let A be a discrete and compact subset of R, 5 ¥ 4 and ¢ > 0. Then

there are g, 01 > 0 s.t. the following strong limits exist

—~

5T>| <1)EAU(t), (4.5)

1>>| < &y . Moreover, if ¢ < ¢’ and

Ff = 5— lim U(t)*EAF(

€ t—+oo

o~

provided A D A and |A] < §, and |supp (F’(?

IA

A C A’ are s.t.

Penr(<r) - (<) 1

and
Ea(MEa(N) = Ea(N), (4.7)

then
FrF* = F* (4.8)

Proof. As usual we consider only the case t — +oc. We begin with
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Lemma 4.2. Let 6 € ¥4 and € > 0. Then there are 6g,61 > 0 s.t.

F<<;7>21>F(%§1)F<%§1) =0, (4.9)
provided 24 < ¢,
F(%:l)F(%gl)F(%gl) =0, (4.10a)

provided 2§ > ¢, and
F<@21>F<@<1)F(1:1) = 0 (4.100)

on RanFEa, for any ¢ > 1 and for any A with A D A and |A| < &y, provided

|suppF<% = 1>| + |suppF’<§ > 1)| <é.

Proof. Since the proof of the first relation is a simplified version of the proof of the other
two plus a covering argument (for the domain {5 < @ < a} by sets {|@ - 1/| < 51}
with ¢ < v < ), we do here only the latter. Pick up ¢ > 1 so large that the maximal

velocity bound

F(@: ) =g (4.11)

ot

holds on Ran Eq , where  is a fixed bounded interval containing A (see [SigSof3, thm
4.3] and [SigSof4, thm 5.2]). Let first 2§ > ¢. We consider the propagation observable
6 = F <@ > 1)F2(@ < 1>F3<1 > 1) . (4.12)
< 5=

gt ot
We labeled the cut-off functions in order to simplify keeping track of them. Using (2.8)
and (3.8), we compute its Heisenberg derivative

1
Dé = —(27 . @)F{Fﬁg
et t

1
+ R (29— @) FyFy (4.13)
ot t

+ B FilH, F3] +0(t7?) .
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Using that 26 > ¢ and picking |supp F’(% > 1) |+ [supp F'<§ > 1)| < d— 5, we conclude

that the first term on the r.h.s. is

> 0tV FIRFy — Ct2 with 6 = (5 - %)5_1 >0.

Next, equation (4.3) implies that there are dyp, 01 and K s.t. the third term on the
r.h.s. sandwiched by Ea on each side is > 92t_1EAF1F2FéEA — Ct 'EAR{EA for some
6, > 0 and for any A with A D A and |A| < &y, provided |suppF’<% > 1>| < 4.
Here

(Sl
(Sl

R, = FPEZ(F):PN(FEEFFF? . (4.14)

These two conclusions together with the fact that ~ is H -bounded yield, under the above

restrictions, that

0 0
EaD¢En E%EAF{FQF;),EA + TQEAFlFQFéEA

C C C
— 7EAF1F2’F3EA — 7EAR1EA Tl

(4.15)

11
In order to estimate the contribution by R; we use (3.9) to commute the F,2’s on

the r.h.s. of (4.14) to the outside positions: Ry = Ry + O(¢t~!) with

(Sl

R, = (F})?FF} PNF}F}(F) (4.16)

Now, denoting ¢(t) = (Fé)%EAlbt , we rewrite
[ e
1
— [ 1PE R

Write PEf = Y (¢, f). Then

finite

@
t

2
"

o dt
R
1

RN RN dt
= > [ W E RS
finite 1

clelr Yy [ IR R

finite

dt
o

IA
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Since

L o dt
/ | F? Fy2 e ||27
1

< // |1/)”(fv)|2d1;dt (4.17)

%tS(m)SQc’t
t>1

=1 (7))

we conclude that
> dt
/ |<R1¢t7¢t>|7 < Ol%]* . (4.18)
1

Integrating differential inequality (4.15) and using (3.1), (4.11) and (4.18), we conclude
that (4.10a) and (4.10b) hold on Ran Ea , provided 2§ > ¢. Since for any ey > 0 there

is € < ¢1 satisfying 0 < e < 2§ and

(52
(e =),

we conclude that (4.10b) holds for any ¢ > 0 and any § ¢ ¥4 . O
This lemma implies readily

Corollary 4.3. Let A be a discrete and compact subset of R and 5 ¢ ¥ 4. Then there

are 0g,d01 > 0, s.t.

F(@ — 1) =0 (4-19)

on Ran Ex , for any A with A D A and |A| < §y and for any cut-off function obeying
|suppF<? = 1>| < d.

Now we return to the proof of theorem 4.1. Using (3.1), we obtain

%U(t)*EAF(t”—t> < I)EAU(t)

- U(t)EADF<<j—t> < 1>EAU(t) Lo .

(4.20)

Moreover, using, as before, (2.8) and (3.8), we find

DF(@ <1) = —;—t(zy - @)F’(@ <1)+0(()7) .

et — et et
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Using that F'(% < 1) = cF(% = 1) , where ¢ > 0, using that ~ is H -bounded and

using (4.19), we arrive at

/T ‘%@, U(t)*Ea (DF(@ < 1))EAU(t)u> ‘dt

et
< Cllullllo]
for any u,v € L? and with C independent of the u’s and v’s. The latter inequality
implies that U(t)*EAF<% < 1>EAU(t) converges strongly as ¢ — +o0o. This proves
(4.5).
Now we show (4.8). By (4.5) and by (4.7)

FE:FFE:E
‘ (4.21)
= s~ lim U(t) En Fu EAF.EAU(1)
where F. = F<@ < 5) . Let F..=1— F. . By (4.6) and by (3.11)
F.EAF. = O(t™") . (4.22)

This together with (4.7) and (4.21) yields (4.8). O

Below by ¢ — 0 we mean that, given a discrete and compact set A, ¢ approaches
0 along the set R\X 4 (which is possible since ¥4 is discrete). We emphasize that in

the definition of FT

e

eqn (4.5), the energy interval A depends on e, while ¢ ¢ T 4.
The next theorem introduces singular projections associated with (z)/t. It is similar to

[SigSof6, thm 4.1] (cf. also [SigSof4, thm 4.1 (ii)]).

Theorem 4.4. The following bounded operators

F*f = s—limF* (4.23)
el0
exist and obey
(F£)? = F* | (4.24)
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(F¥)* = F* > 0 (4.25)

and for any ¢ > 0

FfF* = F*. (4.26)

Proof. Note that F* > 0 and are monotonically non-increasing as ¢ | 0. Hence there
are F* >0 s.t. F* | F* as € | 0, weakly. Picking &', A’, ¢ and A so that (4.6)
and (4.7) hold and using (4.8), we find

I(F — F)ul®
(4.27)
= | FZull® + | Full® — 2(FFu,u) .

€ €

Since 0 < F* <1, we find furthermore
I(FZ — F5)ul®
S E)Pull® + 1(F) ul| = 2(Fu, u)
= (FFu,u) — (FXu,u) — 0
as ¢',e = 0. Hence F¥ — F¥* strongly as ¢ — 0. (4.25) is obvious and (4.24) and

(4.26) follow from (4.23) and (4.8). O

Next, we need the asymptotic energy cut-offs of [SigSof6]. That paper states that the
following limits

Ef = s— lim U@)"EAU(t)

t—+oo

exist for any open Borel set A. Moreover, if A is a Borel set of measure 0, then

+ . +
= s— lim F
Q'A A—A A

where the limit is taken over a sequence of open sets containing A and shrinking to it,
exist and are independent of the sequence of A'’s taken. It is shown in [SigSof6] that Qj

are self-adjoint projections and that QjQ? = Qij (this is not used in this paper) and
[y — Eaty]| < C|A[TH#7H (4.28)

for any A containing A, provided ¥ € Ran Qj Here C' is independent of ¢ and of A

(the independence of A is not used in this paper). Property (4.28) and theorem 4.4 yield
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Theorem 4.5. Let A be a discrete and compact subset of R. Then the following limits

FEf = s— lim U(t)*F<@ < 1)U(t) :

. t=3o0 et =

with ¢ >0 and ¢ € ¥ 4, and

FE = s—limFgjE
elo

exist on Ran Qj . Moreover, these limits coincide (on Ran Qj , of course) with (4.5) and

(4.23), respectively.
We will also need the following

Theorem 4.6. Operators EI and F* (resp. Q:Z and F* ) commute. The statement

remains true if + 1is replaced by —.

Proof. By the definition, by a property of strong convergence and by uniform boundedness
of FF¥ and EX,
+ Ot — 1 + pt
[F 7Q,A] = S 11_{% [Fe 7EA] 9

A A

where the limits can be taken in any order. Again, by a property of strong convergence

and uniform boundedness of U(t)*EAlF(% < l)EAlU(t) and of U(t)*EAU(t),

[FY EX] = lim U(t)*Ea, [F(<:—t> <1),EA]Ea,U(t) .

t—+4 oo

By (3.11) with R = t, the commutator on the r.h.s. is O(t'). Hence [FF,E{] =0,

which yields [F'T, Q::] =0. 0O
We denote Q* = Qi whenever A is the threshold set, 7, of H .
Theorem 4.7. Ran F* C RanQ*.
Proof. Let ¢ € (RanQT)® . Then, by the definition of Q% , for any ¢ > 0 there is a
closed set € disjoint from 7 and s.t.
o - Efol < <. (4.29)
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By the minimal velocity estimate ([SigSof4, thm 5.1], see also [SigSof3, thm 4.2]) there is
60 >0 s.t.

— 0

(< 5)

as t — 4o0o. In terms of asymptotic cut-offs this can be rewritten as F;'Eglb =0, 1e.
El¢ € (Ran Fyf)L C (Ran FT)L . Taking this into account and remembering that ¢ > 0

in (4.29) is arbitrary, we obtain that ¢ € (Ran FT)+. O

5. Microlocal analysis on RanF+

In this section we show that (z) is sharply localized on Ran F* . We begin with

Theorem 5.1. Let § >0 and ¢ > 0. Then thereis A D 7 s.t. for any a € (0,1] and

any v € Ran ™ we have

~——

> 1)F(<i > 1)Ew,f||2 < e (5.1)

”F(tl—a >
et

SIS

where n = (1 — 27 N=-1)=1

Proof. Let ~; be the self-adjoint operator related to ~ and defined in theorem A.1.
Let first § € ¥4 and ¢ < 2§ . Consider the propagation observable
6 = F(@21)F(ﬂ>1)F(@21> . (5.2)
et et
In the proof below O(---) and O;(---) stand for an estimate uniform in ¢ and §. Using
eqn (3.8), we compute its Heisenberg derivative

Dé = (et)! (27 . @)F{FQE + adjoint

+ FiDEF + O((et)7?)

(5.3)

where we have used our standard abbreviations for cut-off functions and where we have

used that

<x>_SF(— > 1) = O((et)™) . (5.4)



Since 2§ > ¢, we can choose the cut-off functions so that

2inf supp F> (

| >

A
> 1) — supsupp F} (— > 1) >0. (5.5)
€
Thus, due to (A.1), the first two terms on the r.h.s. are
91 ! —2
> —Re(F{RFR) - C(et) (5.6)
€

for some #; > 0. Next, using first (3.8), with B =~ and R = t~2 , then symmetrizing

with the help of estimates of the type of (3.10) and (A.2), we obtain

DF, = Z(F):Dy(F3)z +0.(67%7") .

Now using (A.3), we derive

DF, > O.(67%77) . (5.7)

This together with (5.3) and (5.6) yields
Do > Oy( %7 . (5.8)
Now we introduce, for A the same as in lemma 4.2,
6% = U(t)* EadEAU(t) . (5.9)
Combining this with a more precise version, due to (3.11), of (3.1), we obtain
%qﬁg — U(t) EADSEAU(t) + O A"+ 1—4) (5.10)

Due to eqn (A.1) we can replace in the statement of lemma 4.2 v by 7;. This and eqn

(5.3) yield that for any o >0

| 1Esun 00 () <) Bsulin < Clullo]

ot
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Next we need the maximal velocity estimate of [SigSof3, thm 4.3] (or [SigSof4, thm 3.3]):

for any bounded €, for ¢ > 0 sufficiently large (depending on Q) and for any ¢ € L?

[ 2y maeerar < opeytor (511)

const

where p > with the constant positive and depending only on 2. The last three

estimates and the fact that D¢ = O%(t_l) , yield

<d 1
|1 Gehvwlde < cl@tolal
1
which implies that

o0 : (1t
= s— lim
¢ t—+oco ¢A

exist on (z)”2L? and therefore on L?. Let now
o' = U(t) oU(t) .
By (4.28) and (3.10)—(3.11) (with R =ct)
¢' = ¢ +O((IAldet) ™) + O(|A[T17")

on Ran Q™ . Hence

6 = s— lim o' (5.12)

exists on Ran Q%1 . Now combining

< d
t 100 - _ el 'sd 1
o' — ¢ /t T 9°ds (5.13)
with (5.8) and with the relation d%qﬁs = U(s)*D¢U(s) , we obtain that on Ran Q™

Pt < P+ CeTHITT . (5.14)

Note now that by the definition of F* and a property of strong convergence

oY = 0 for any ¢ € Ran F* .
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The last two relations and the definition of ¢! yield

1P =) (2 s 1Yo < ¢ (minge.8) 00 (515

provided ¥» € Ran F™ (C Ran Q™" ), § € &, and ¢ < 2§ . Clearly, the last two restrictions
on § and ¢ can be dropped. Replacing in (5.15) ¢ by t®~! and § by §“~!, we arrive
at (5.1). O

Now we consider the remaining part of the phase-space. The results which follow are

closely related to results of [SigSof6,sect. 12].

Theorem 5.2. Let a > ?’2;", >0 and 6 < &7 . Then

F(% - 5>F(t1_“7 <8 =0 (5.16)

on Ran Fq for any bounded ().

Proof. Consider the propagation observable

¢ = F(<f—a> > ) F(t' =y < ) (5.17)

with the parameters specified in the theorem. Using (3.8) and (A.2), we compute its

Heisenberg derivative

1
Dy = (1729 - a%) F'F

+ Ft' =Dy F' 4+ O %) + Oq (£ —77) .

Using (A.1) (and the fact that 5, > 1 —a ), the support properties of the cut-off functions
and choosing these functions sufficiently sharp, we conclude that the first term on the r.h.s.

is < —6t"1'F'F for some 6 > 0. Symmetrizing the second term on the r.h.s. and using

(A.2) and (A.3), we find that it is < O¢(#*72*~"). Thus

D¢ < —6t7'F'F 4+ Ct 24 0,(#* 72271 . (5.18)
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By the condition on « the second and third terms on the r.h.s. are integrable. Applying
the first part of lemma 3.1 to this differential inequality and using that F’(g—) > 1) =
const F(i%) = 1) with a positive constant, we arrive at F(g—) = £>F(t1_a7t <4)=0

on Ran Eq for any bounded 2. Finally, using (A.1) we derive readily that

Ft' ™y <é) = FA' vy <8+ 0t > m), (5.19)

— 2—N—1

where 7, . Since 1 > 1 — a, this allows us to pass from the last statement to

(5.16). O

Theorem 5.3. Let 32;” <a<l,e>0,d<% and 0 < p <min(2a+n—3,a+n—1).
Let Q be bounded. Then
dt

ti=r

o0 2z . B

[T1E( 2 ) pe s < Bl < clwtor (5.20)
1

for any ¢ € L? and with C independent of the 1) ’s.

Proof. For given Q we pick up o > 0 so large that (5.11) holds. Let f(A) = AF(A > ¢).

With the parameters defined in the lemma we introduce the observable
¢ = _tﬂf(<t’”—a>)F(<“t7—> < o)F(t' "%y, <4), (5.21)

where, recall, ~; is given in theorem A.1. Compute the Heisenberg derivative

2
Do =t (a8 _ 1 )F'FF — pt*"' fFF
teter (5.22)
—t’fDFF — t’fFt' (D) F' + O ("1 71 1 O(¢72) .
Symmetrizing and using (A.2) and (A.3), we estimate the fourth term on the r.h.s. from
below by Oq(tPt?722=1) . Next, using support properties of the first and third cut-off
functions and using that f(A) < Af/(A), we estimate the first two terms on the r.h.s. from
below by ¢! ((a —ple =26 — 51)f’FF, where §1 = [supp F'(A > )| + [supp F'(A < §)].
Picking up &1 < 1((a — p)e — 20) = n and using that f(A) > cF(XA > ¢), we conclude
that
D¢ > nt* 'FFF + fDFF

(5.23)
+ Oy (o220
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Next we have

DF(@ <o) =t (2y— @)F’(@ <o)+ 0@17?). (5.24)

Using now that F’(<f—> < 0') = —F(@ = 0') , times a positive constant, and that ~ is
v —A -bounded and using that ¢ < 0 and following the second option in lemma 3.1, we

derive from (5.23), (5.24) and (5.11) that
dt
th=e (5.25)

/loo ||F(<tx—a> > a)F(@ < o) F(t' ™%y < p)Eodi|?

< C(e)y)* .
Combining this with (5.11) and using (5.19) in order to pass from ~; to =, we obtain

(5.20). O

Theorem 5.4. Let a > 3%", e >0 and § < 5. Let Q be bounded. Then for any

Y € L? and as t — +o0

F(% > 5>F<t1_a7 < §) Bty — 0. (5.26)

Proof. Let ¢; be given by (5.17). Equations (5.20) and (5.19) imply that there is a

sequence t, s.t. t, — oc and
o1, 0, — 0 (5.27)
as n — oo for any @ € L?. Consider now the Heisenberg family
o' = U(t)*EqodldiEqU(t) . (5.28)
Observe that, due to (3.9) with R = ¢t* and X\ = 0, ¢}¢; is, modulo O(t'~2%) of the
form (5.17). In fact, an estimate of the type of (5.18) can be shown directly for ¢}¢; .
Hence, by (3.1) and (5.18)
%w < Ct1TH L Oy (#22e) (5.29)

Since, by our assumptions on «a, the r.h.s. is integrable and since ¢’ > 0, we obtain
that (o', ) = ||¢1Eq¢||* converges as t — +oo. This together with (5.27) yields that
otEqiy — 0 as t — oo . Finally, using (5.19), we can pass in this relation from 7; to ~

to arrive at (5.26). O
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Corollary 5.5. Let a > 3%” . Then for any ¥ € Ran F'™

F(%zl)% 0 ast—s too. (5.30)

Proof. Combining theorems 5.1 and 5.4, we obtain

F(@ > 1>Em/;t =0

t>

as t — +oo, for any bounded Q. On the other hand by [SigSof4, thm 4.1 (ii)] for any

6 > 0 there is a bounded interval  s.t.

sup (1 - Ea)]| < 4.

The last two relations yield (5.30). O

6. Reduction

In this section we show that ;, for any ¢ € Ran F'T , approaches as ¢ — +oc an orbit
generated, modulo a time-dependent factor, by the time-independent Hamiltonian H .

Indeed, if

Uo(t) = e_the_ifO W(08)ds (6.1)

then the difference between the generators of U(t) and Up(t),ie. W(x,t) — W(0,¢t), is
O(t~1=r+) in the region |z| < Ct* in which ¢; localized as ¢t — +oc. Therefore it is
integrable for a < p. In this section we follow closely the arguments of [SigSof6, sect. 5].

To cast the discussion above into rigorous terms we introduce the wave operators

WE = s— lm Uo(t)*F(@ < 1>U(t) (6.2)

t—+oo ||
whenever they exist.
Theorem 6.1. Let p > a > 3%" . Then W exist on Ran F* .
Proof. Differentiating the family Wy(s) = Uo(s)*F(fT) < 1>U(s) , we find

d%wo(s) — iUo(s)*(A+ B)U(s) , (6:3)
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where

A = i(W(0,s) — W(gg,s))F(i’”—a> < 1) (6.4)
and
B = DF(<S> <1). (6.5)

By (2.3), A = O(s*'7#) and therefore contributes an integrable term into %W(s).

Next, let § < 5. Using that

DF(< ?) <1) = %(231_a7—af—>>}7'<@ < 1)

“ 5 (6.6)
+ O(s72)
and that F’(S:—J > 1) = (positive constant) - F(S%> = 1) , we find that due to theorem
5.2
F(s'=oy < 5)DF(S%> < 1) = 0 (6.7)

on Ran Eg . On the other hand, by theorem 5.1 and +/—A -boundedness of v we have
that
F(si=oy > 5)DF(i> < 1) = 0, (720 (6.8)

Sa

on Ran FT . Collecting the last three statements and remembering (4.28) and theorem
4.6 we conclude that
d

[ sty

for any ¢ € Ran F'™ for any u € L? and with C independent of the 1 ’s and u’s. This

ds < Cll9|[]ul]

inequality shows that Wy(t) = )+ f s)ds converges strongly as ¢t — oo. O
Theorem 6.1 implies that for any g € Ran (F*QT) thereis 6 s.t.
HF( <1)g—Us()6| = 0

as t — +oo, provided g > a > 32;" Combining this with (5.30), we obtain that, if

o> 3%" , then for any g € Ran(FTQ™") thereis 6 s.t.
lge = Uo(#)6]] — 0 (6.9)
as t — +oo.
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3—7

Theorem 6.2. Let p > 51 . For any @ € L? and for any § > 0 there are a finite

2

union, ), of compact intervals disjoint from the threshold set of H, ¢ >0 and T > 0

and there is 0 s.t.

||1/}t . F(@ Z 5) Lpt _ e—the_ifO [{/’(075)d89|| S 5

t
for t > T . Here p is the projection of 1 onto (Ran FT)L.

Proof. We can decompose any ¢ € L? as @) = ¢ + g with
¢ LRanF* and g€ RanFT .
We claim that for any § > 0 there are ¢ >0 and T > 0 s.t.

||F<<:tc—>§€><,9t|| < 4§ foranyt>T.

Indeed, denote F! = U(t)*F(ﬂ < &:)U(t) . Using that FTp = 0, we obtain

t

IF (5 < e)el

< I(F = FN el + I(ES = F el -

—~

z)

- ‘

First for any d > 0 we pick up € > 0 so that

>

I(FZ = F)ell < 2

w

and then for § >0 and ¢ > 0 we pick T'=T(4,¢) s.t.

=

I(Ff - Fpll < 2 foranyt>T(5,¢) .

w

The last two relations yield (6.12).

Equations (6.9), (6.11) and (6.12) yield (6.10). O

26

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)



7. Asymptotic Clustering Revisited

In this section we present results on break up of the system in question due to propagation
of fragments away from each other. We begin with definitions pertaining to such break
ups. Denote by a,b,... partitions of the set {1,..., N} into non-empty disjoint subsets,
called clusters. The relation b < a means that b is a refinement of a and b # a.
Then a Vb, amin and apmax are defined in a standard way. |a| denotes the number
of clusters in a. We also identify pairs ¢ = (ij) with partitions having N — 1 clusters:
(i7) < {(ig)(1)---()---(3)--- (N)}. We emphasize that the relation £ £ a (resp. £ < a)
with ¢ = (ij) is equivalent to saying that ¢ and j belong to different clusters (resp. to
same cluster) of a.

We define the wntercluster interaction for a partition a as I, = sum of all potentials
linking different clusters in a,ie. I, = > Vy. For each a we introduce the truncated

{La
Hamiltonian:

H, = H—1,. (7.1)

This operator is clearly self-adjoint. It describes the motion of the original system broken
into non-interacting clusters of particles.
For each cluster decomposition a, define the configuration space of relative motion

of the clusters in a:
X, = {r € X|e; ==z, if i and j belong to same cluster of a}
and the configuration space of the internal motion within those clusters:

X = {z € X| ij.rj =0 for all C; € a}.
JEC;

Clearly X, and X® are orthogonal (in our inner product) and they span X :

X = X‘6X,. (7.2)
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Given generic vector x € X (resp., k € X') its projections on X* and X, (resp., (X*)
and X! ) will be denoted by z® and z, (resp., k* and k, ). The momentum operators
canonically conjugate to z, and xz® and corresponding to k, and k® will be denoted by
po and p®, respectively. Let v, = i[|pa|?, z4], the cluster velocity operator.

For long-range potentials, even as clusters move away from each other, the intercluster
interaction cannot be entirely ignored. Its effect remains in the form of time-dependent
modification of the internal potentials of the clusters. We proceed to the definition of this

modification. We introduce the following cut-off function

Fu(x) =[] F [(="y > 1] . (7.3)

{La
Note that this function is supported in the region of the configuration space in which the

distance between clusters in a is at least 1. Now we are prepared to define the modified

Hamiltonian of independent clusters:

H,(t) = H, + W,(t), (7.4)
where W,(t) is the family of pseudodifferential operators written in detail as

Wa(t) = W (2%, vat) (7.5)

(note here that #* and v, commute). Here (note the identification x = (%, z,))

Wei(z) = Wo(2)F <|t<|xj—>1 > /\> +W(z,t) and W,(z) = I(z)F, ((Sf—m) . (7.6)

where § > 0 is a geometrical constant depending only on N and the m;’s and A >0 is
sufficiently small and is specified in appropriate places. Due to condition (B) the effective

potentials W, ; obey the estimates

10707 Wa ()] < Cap(l+ |z| + [¢]) 7117 (7.7)
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for |a|+ |8| < 2. These inequalities hold strictly speaking only for ¢ sufficiently large so
that dAt > R. However, in order not to complicate the notation we ignore this qualifica-
tion.

Since H, is self-adjoint and W,(t) is uniformly (in ¢) bounded, one concludes that
H,(t) generates the evolution U,(t) (see e.g. [RSII]). More precisely, there is a family
Ua(t) of unitary operators (with a certain group property) which solves uniquely the

Schrodinger Cauchy problem:

= H,(t)Ua(t), Ua(0) =id (7.8)

We introduce U, a(t) = F(|pa| > A)U,y(t), where X is the same as in (7.6). Of course
F(|pa] > A) commutes with U,(t). Observe also that |v,| = 2|ps|, where the Lh.s. norm

is in X , while the r.h.s.,in X’.

Theorem 7.1. Assume conditions (A) and (B) with > 1. Let ¢ be either EA(1— P)
with A a bounded interval disjoint from the thresholds of H or F(@ > 5) EA with
>0 and A bounded. Then there are T € L? and A >0 s.t.

lpve = > Uaat)vE| — 0 (7.9)

la|>2

as t — 4+o0o. Here A belongs to (0,6cy), where § > 0 depends on N, the m;’s and A
only and where ¢y = )\gg%\ler(E — /\)% with E = inf A in the first case and ¢y = ¢, in
the second case.

When (7.9) holds we say that ¢ is asymptotically clustering.

This theorem for p =1 is formulated in [SigSof6, thm 8.3] and its proof is essentially
contained in [SigSofl,3] (a simpler version is given in [Derl]) with minor adjustments
discussed in [SigSof6]. To obtain the result for p > % one combines the proofof =1 case

with an observation of [GerDer|. The latter consists of proving the existence of the Deift-

Simon wave operators in two steps, first, by comparing U(#) with the evolution generated
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by H, + W, () and then by comparing the latter evolution with U,(t) (generated by
H,(t)=H,+ Waﬂf(m“, vat)) . One can also derive theorem 7.1 directly from the proof of

[GerDer].

8. Asymptotic Completeness

In this section we combined results of sections 5-7 in order to prove asymptotic complete-
ness. To begin with, we cast the intuitive notion of asymptotic completeness into precise
mathematical terms. To this end we need the notion of channel. If ¢ and j belong to

® is the orthogonal projection

some cluster of a, then z; —z; = (7%z); — (7%x); , where =
in X on X“. This elementary fact and the fact that —A = (p,p) with p = —iV, (see

equation (2.5) and the sentence after it) yield the following decomposition:

H,=H"®1+1®T, on L*(X) = L*(X")® L*(X,). (8.1)
Here H® is the Hamiltonian of the non-interacting a -clusters with their centers-of-mass
fixed at the origin, acting on L?*(X®), and T, = —(Laplacian on X,), the kinetic energy
of the center-of-mass motion of those clusters.

The eigenvalues of H® | whenever they exist, will be denoted by ¢ , where a = (a,m)
with m , the number of the eigenvalue in question counting the multiplicity. For a = anin ,
we set € = 0. The set 7 = {¢®, all a} is called the threshold set of H and & are
called the thresholds of H . For a = (a,m) we denote |a| = |a| and a(a) =a.

Pairs o = (a,m) are called the channels. Each pair can be identified with an asymp-
totic state of the system in question as ¢t — +o0c0 or t —+ —oo: a specifies a decomposition
of the system into subsystems and m specifies a stable motion (i.e. a bound state) within
each subsystem of this decomposition. Next we define the channel Hamiltonians for the
long-range scattering as

Ho(t) = % 4 |pa|® + Wa(0,v,t)
on L*(X,). Denote now by U,(t) the evolution on L*(X,) generated by H,(t):

i%UQ(t):HQ(t)UQ(t) and  U,(0) = id (8.2)
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Uq(t) are the channel evolution operators. We now can formulate the property of asymp-

totic completeness. We say that a system obeying (B) (see section 2) with u > % is

asymptotically complete if for any ¢ € L*(X)

e — Y @ Ua(tyu| — 0 (8.3)

+

as t — doo for some ul . Here ¥® are the eigenfunctions of H® corresponding to

eigenvalues £ and the sum extends over all channels including a trivial one with |a(a)| =
1.

This definition is equivalent to a standard one in terms of the channel wave operators
(provided the latter exist). The smoothness restriction in condition (B) is immaterial, it
can be replaced by any other suitable condition. However, the restriction on the decay is
essential (see [Sigl]).

We formulate the main result of this paper.

Theorem 8.1. Assume conditions (A) — (B) hold with p > 32;", where n = (1 —

2=N=1)=1 Then asymptotic completeness holds.
Proof. First of all theorem 6.2 states that for any € L?, for any § > 0 there are

e>0, T>0 and p,0 € L? s.t.

€ i —1 ‘w s)ds
”lbf—F(%E@)%—e"er Jyweatg < (84)

for t > T. For § > 0 we pick up a neighbourhood, Q' of 7U {oc}, where, recall, 7 is
the threshold set of H , so that

|Eqf|| < 6. (8.5)

Let © be a compact set disjoint from the thresholds of H and s.t.

EFq+FEqg = 1. (86)
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Then, by theorem 7.1, EqPe™H'§ where P = 1 — P, is asymptotically clustering, i.e.
there are A > 0 and 6, s.t.
lemiHte o WO B By $T U, \(#)6a]| — 0 (8.7)
la]>2
as t — 4oo. Here U, x(t) are the evolution operators described in section 7 (after

eqn (7.8). For the discrete part we have

e—the—ifO I/V(078)EQP9

4 : (8.8)
_ Z e—z(s t—l—fo VV(O,S)dS))PaEQG :
where the sum is taken over all a’ss.t. |a(a)| =1 and e* € Q. Since Q is disjoint from
the thresholds of H , the sum on the r.h.s. is finite.
By [SigSof4, thm 4.1 (ii)] for any d > 0 there is a bounded set €2y s.t.
sup [[(1 — Eq, )@ < 4. (8.9)
t

Next, by theorem 7.1, F(@ > 5) Eq, p: 1s asymptotically clustering, i.e. there are A > 0

and p, € L? s.t.

17( ze)Ewt—l%Ua,A(twa|| -0 (8.10)

as t — +oo. Combining eqns (8.4)—(8.10) yields that for any § > 0 there are A >0, a

finite subset, A, of the a’s with |a(a)] =1, ¢, € L? and 6 € L? s.t.

sngl/)t — ) Ualt)Pab

acA

=) Uaa(t)all < 6.

la]>2
Applying this statement inductively and taking into account that P,U,(t) =
Ua(t)PoF(|pa] > A) for a(a) = a, we conclude that for any ¢ € L? and § > 0 we
can find ¢, s € L? and a finite subset, B, of the a’s s.t.
sup [[1¢ - D Ua(t)Patpas| < 6.
a€EB
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On the other by a standard argument the wave operators
s —Hm U ()" P,Uq(t)
exist. The last two results yield (8.3). O

Appendix: Operator ;.

The analysis of this supplement is motivated by [SigSofl,3] and, to a larger extent, by
[Gr]. Some of the analysis of section 7 simplifies if we use the operator ~;, constructed
in this supplement, instead of ~. An important fact is that though ~; is close to =, its
Heisenberg derivative has a useful lower bound globally. The main result of this section is

Theorem A.1. There is a family, 7, of self-adjoint operators s.t. (—A 4+ 1)7% v (—A+

1)~2%% is bounded and norm differentiable for any s € [0, 3] and s.t.

v = v+ 0@E™), (4.1)
[’Vtv[’thH = Ol(t_n2) (AQ)

and
Dy > —Ct" (A.3)

with 11 > 7'2;1 > 0 and 12 > n > 1, depending entirely on N and p, and with the

2

2, we can choose then n; =27V~ py = (1-27N)~!

constant independent of t. If p >

and n=(1—-2"N-1)=1,

Below we construct v; explicitly and prove an estimate stronger than (A.3) and which
implies positivity of D~; sandwiched by appropriate energy cut-offs. Before proceeding to

the proof we introduce some definitions and notation. We introduce self-adjoint operators

1

7a = §(<pa7£,a>_|_<£a7pa>) >
and
Ya = %(<paa-ia> + <'%a7pa>) ) (A4)
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related to the internal motion of the clusters and to the motion of the centers-of-mass of

the clusters.
Let numbers §, € (maX <%,ﬁ>,l) satisfy 8 < 4, if b < a. Moreover, we

assume that 21;)nin5b > 6, +1 for any a with |a] >2. Let + > 1 and t, = t% . [SigSof6]
>a

have constructed the following partition of unity (see also [SigSofl] and, especially, [Gr]):

0 <jai(x) <1, jo¢(x) are smoothin x and ¢t and obey
> Jaale)? =1, (4.5)

suppja,s C {2 <ta, |2fa > cta} (A.6)
for some geometrical constant ¢ dependent only on N and the m;’s and for

t, = minty , (A.7)
b>a
8% jas(x) = O(t;1%l (A.8)
for any (3, and
Vejar = —f—xa FOEY), (A.9)

where 0 < y, < 1 is a smooth function supported in suppj,; and obeying e =

O(t;'m) . Moreover,

('9,5]'(1,75 — O(t_l) . (A]_O)

Thus {j,+} is a smooth partition of unity describing various break-ups of the system.

Remarks A.2. (a) [SigSof6] defines j, ; for |a| > 2 satisfying > jo = F(t<L> > 1) :

|a|22 @max

a

Thus adding to this collection j,; = F(<f—> < 1) for @ = apax and renormalizing
produces the desired partition of unity. (b) In fact, the partition in [SigSof6] is defined
for arbitrary scales t, satisfying ¢, < (10M)~'t, if b < a with M given by M =

max sup (JzVe|(Jz*] + |2])™!) < oo

a, x
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Equations (A.8), (A.9) and (A.10) and a simple computation show that

a

Dja,t = _Qt(:I'V Xa
+0:(E 1) +O(t?) .
Now we define

Yt = Z]‘a,t’}/a]‘a,t .

Proof of theorem A.1. Using that by (A.8)

h/avja,t] - _i-i'a(vaja,t)
= O(t,")

a

we obtain
v o= Z(]’aﬂf)zya 4+ O(max t; ') .

This together with (A.7) yields
% = v+ R+ O(maxt, "),

where

R = Z(ja,t)2(’7a —-7) -

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

It remains to estimate R . Ignoring higher order terms, we assume = = .r<x>_1 , etc. Using

that
%\a'pa = <$a>_lma'pa = <xa>_1(x'p_xa'pa)
e .,
IR R R
we find
I R L IR
Yo — (m> 1)y AL +O0((za)™)
Next, using that
1 _ (@) —(@a)
(@)™ =
0™
((x) + (za))(®a) ’

(A.16)

(A.17)

(A.18)



we obtain

o (z°)? (=Y -
"= e ) + O((za)™") - (A.19)

Using this relation, the definition of R, using (A.6) and using that v and * are /—A-
bounded, we obtain

R =0 (maxtz-t_(:?)—l—O (maxt )—I—O(maxt 1)

(S

= 0

(maaxta ).

=

This together with (A.14) and the relations t, = tha and t, = gnintb yields (A.1) with
>a

= O — d4 .
m = mnlgind, = 8.) > 0

(A.2) with 9y = 2mind, > 1 results from a straightforward computation.

Now we prove (A.3). Using that

i[H, ] = 2
[H,7a] Ta> —73) o
O((ra)™?) + O(Va1,)

and that VI, = O(|z|,)”'™") and (A.6), we find

1
Yt =2 Ja, t %1) ja,t
pB¥ o

(A.20)
+ Ry + O(maxta 1= "),
where we have assumed that g <1 and where
Ry = 4 (Djai)Vaja, + adjoint .
Using (A.19) and the relation ) D(j2,) = 0, and using (A.6) and (A.8), we get
xa
—Y_ Dja, t 7 “Jat
xa
+ O%(maxta )+ O1(maxt, ' -2 £,2) + O%(maxtgl ).
Now remembering (A.11), we find
z*)
Ry =2) t° vxa T Ja )"
2 za) (A.21)

+ O%(maxta ) + O1(maxt, -t_;2) )
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Combining (A.20) and (A.21), we obtain

Yt _QZ]at\/T %1 \/—]at
12} a*aw >>7 (A.22)

a

+ 02 (maxt %) + Oy (maxt, - ;%) + O(maxt, ' 7#) .

a

Since each of the first two terms on the r.h.s. is positive (p? > ~2), this yields (A.3) with
n= mlnmln(2 IbIllIl dp — 04, (1 + p)é,) . By our choice of the d,’s, n >1 and ny > 7.
>a
Now take d§, = d|,; with (1 —I—,u)_1 <Oy <o <6 <1. Pick up 6; = 211§, —
(2771 —1)b and b =4, [1 - le N] . Taking §; very close to 1 and observing that,
if p> 2, then b> (1—2"""1~! we conclude that n; > 27V p, > (1 —27N)~!

and n > (1 —27V=1)=! Thus (A.1)-(A.3) are obeyed for our choice of the n’s. O
Note here that eqn (A.22) and the first part of lemma 3.1 imply

Theorem A.2. Let j,; be as above. Then

/1 ||(p3—72)%%ja,t(ﬂ+i)‘l¢tl|2dt < ol (4.23)

for any ¢ € L? and with C independent of the 1) ’s.

Observe that p? —~+2 >0 and

1, _
~Ya = Pa[Pa— 5(VaTa + Taa)] + O1 ((za) ") -

2

Hence (A.23) contains a rather strong statement about propagation: ; “vanishes” on
{ka/|ka| = za/|2a|} Nsupp Jjao,¢ . It can be used as one of the key ingredients in the proof

of asymptotic clustering (theorem 7.1). This approach is similar to that of [Gr].
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