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1. Introduction and Result

Consider a molecule consisting of N electrons, each of the charge —1 and M nuclei

3

of charges Zi,...,Zp . The position and spin space of a single electron are ° and 5,

respectively. We assume that the system is neutral, i.e.

M
N=Y 2,
=1

and that the nuclei are infinitely heavy and located at positions Ri,...,Rp . The

Schrodinger operator of such a system in appropriate units is

H(Z,R) =

-

— —A Vz(zi, R)) + Z z; — zj] 7 (1.1)
z:l 1<g

acting on /\ L?(3 x 3) . Here x; € 3 is the coordinate of the i-th electron and A; is the
=1

Laplacian in z;, Z = (Z1,...,Zm), R=(Ry,...,Rp) and

Z ‘x_ R B (1.2)

Vz(xz,R) is potential of attraction of an electron to the nuclei situated at positions
Ry,..., Ry . Let
E(Z,R) = infspec H(Z,R) ,

the ground state energy of H(Z,R). In this paper we study an asymptotic behaviour of
E(Z,R) as Z — oo along some direction in .

L.H. Thomas and E. Fermi have suggested in 1927 that a large Coulomb system (atom
or molecule) in the ground state ( = eigenfunction corresponding to the lowest eigenvalue)
looks like a classical gas but with Pauli principle, namely, there could be at most 2 electrons

per volume (2m)% in the phase space. Such an object is called now the Thomas-Fermi

gas. Its states are described by the electron density p > 0 on 3 normalized as

/p = N = # of electrons. (1.3)
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The energy of the Thomas-Fermi gas is given by a non-linear functional

%) = v [0 = [Vorg [osl 50, (1.4)

where y = %(3%2)% and V (z, R) is given by (1.2). This functional is finite for p € L3 NL?
and is bounded from below on the set Sy = {p € L% N L* | p>0and [p= N} (see
a brief review of the Thomas-Fermi theory in section 2 and the classical works [LiebSim
1977 and Lieb 1981], which this review follows).

The ground state or Thomas-Fermi energy, E™F(Z, R), is the infimum (in fact, min-

imum if N <X¥Z;) of this functional on Sy . It has the following scaling property
E™(Z R) = p"ETF(8*Z,57'R) . (1.5)
Let |Z| =XZ;. Taking f = |Z|~% and using eqn (1.5), we obtain
E™(Z,R) = |Z|FE™(\y) .

where A = |Z|7'Z and y = |Z|sR. This formula determines the dependence of
ETF(Z R) on |Z| in the case when A and y are fixed. In the general case eqn (1.5) and
[LiebSim 1977, thms V.3 and V.4] yield that

atom atom

(22} EfEa(1) < E™(Z,R) < (S2))ERE.(1) , (1.6)

where EXEF ()\) is the infimum of £TF(p) for V(z) = A|z|~! on the set Sy, i.e. the

atom

Thomas-Fermi energy of the “\-atom”. Note that E.L- (1) is independent of Z and

atom

R.If Z — oo in a fixed direction and R obeys n;zn\Rz —R;| > |Z|7" with v < 1, then
i#]

ET(Z,R) = Y Efha(Z)) = 0(Z1+) (L.7)

This follows from (1.5) and [Lieb 1981, Thm 4.13].
The next theorem shows that the Thomas-Fermi theory is asymptotically correct for

large Z systems but only to the leading order.
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Theorem 1.1. Let |Z]| — oo so that min Z; > 6;|Z| for 6; > 0 independent of Z and
let the mutual distances between R; (which are allowed to depend on Z ) be bounded

from below by |Z|~%%¢ with € > 0. Then for any § > 0
E(Z,R) = E™(Z,R) + 222 +0(a=5|Z|519) (1.8)

where a = min(|Z|5|R; — R;|, i # j; 1) and the estimate is uniform in the Z;|Z|~" and

in the |Z|5R; .

It will follow from the analysis below that the leading term on the r.h.s. represents the
quasiclassical energy of the bulk of electrons and the second term, the quantum spectrum
of Coulomb singularities.

The leading term in (1.6) was obtained in [LiebSim 1977] (see also Lieb 1981 and
Thirr 1981). The second term of asymptotics was conjectured by J.M.C. Scott in 1952 as
a contribution of those electrons which move very close to the nuclei (see [LiebSim 1977
and Lieb 1981] for a discussion). For atoms the Scott conjecture was proven in [Hughes
1990, SiedWeik 1987,1989] (see also [SiedWeik 1990]). Thus the new result of this paper
is a proof of Scott conjecture for molecules. A proof of the next, Z 8§ term for atoms is
announced in [FeffSeco 1990]. The approach in [Hughes 1990, SiedWeik 1987,1989,1990,
FeffSeco 1990] is based on an expansion in angular momentum channels. This is possible
since the electron interaction with the nucleus V' (z, R), is spherically symmetric in atoms.
The problem is then reduced to a one-dimensional one which is treated by the standard
WKB method. The proof in this paper is rather general and is discussed below.

The philosophy of our approach is the same as that of Hughes-Siedentop-Weikard and
can be discerned from [Lieb 1981]. Namely, on the first step the ground state energy of
fully interacting electrons is approximated up to the order O(|Z|3) by the ground state
energy of independent Fermions moving in an effective exterior potential, —¢@(z). The
latter is composed of the original attractive potential between a given electron and the

nuclei and an electro-static potential produced by an averaged out electron charge density.
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This mean electron charge density must be found in a self-consistent way and it turns out
to be the density which minimizes the Thomas-Fermi functional, i.e. the Thomas-Fermi
density. We mention here that such an approach is rather common in Physics and is called
the mean field approximation. After that the problem of finding the ground state energy
of a system of N independent Fermions is reduced to determining the sum of the first
N eigenvalues (counting the multiplicities, including those due to the spins) of the basic
one-particle Schrodinger operator, P = —%A —¢(x) . A simple scaling maps the large |Z|
problem into the quasiclassical problem with |Z \_% playing the role of a Planck constant.

On the second step one studies quasiclassical asymptotics for the sum of the first N
eigenvalues of P, or, in general, a class of one-particle Schrodinger operators whose poten-
tials have Coulomb singularities. The point here is that the Weyl term of the asymptotics
will be identified with the Thomas-Fermi contribution to the original ground state energy
while the second term, with the Scott correction. The physics of the problem suggests
that the second term should come from the singularities of the potential. The difficulty in
finding such an asymptotic expansion is twofold. First of all the problem of determining
the second term in the quasiclassical and spectral asymptotics is notoriously difficult (see
e.g. [Horm III, IV, Ivrii 1990-91, Robert 1987, Hux 1988, HelffRob 1990] and references
therein). Secondly, all known approaches use pseudodifferential or Fourier integral opera-
tor Calculus and consequently require smooth potentials. Our method originates in general
ideas of [Ivrii 1986, 1990-91], related to an approach of [Beals Feff 1974, Beals 1975] (see
also [Tam 1984]).

There are two ingredients in our proof. First of all we estimate global quantities

through local ones. For instance, we study

tr(¥(z)g(P)) , (1.7)

where g(A\) = X for A <0 and =0 for A > 0. If ¢y = 1, then the trace above is

just the sum of negative eigenvalues of P, the quantity we want to estimate. We take
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for 1 smooth functions localized outside of the singularities of the potentials. Then it is
not difficult to obtain asymptotic expansion in the quasiclassical parameter 3 of the trace
(1.7). Pseudodifferential calculus provides convenient tools for such a purpose. Adapting

a standard technique, one represents g(P) as

a(P) = / a(t)e=Prdt

where §(t) is the Fourier transform of g. The evolution operator e~*"* is then approx-
imated for sufficiently small times and to any power in 3 by Fourier integral operators
in the spirit of the geometrical optics. Such an approximation is possible because of fi-
nite speed of propagation of singularities (properly defined) for the Schrédinger equation,
provided the energy is bounded from above (i.e. sup(suppg) < oo ) and the coordinate
is localized in a domain in which the potential is bounded from below (cf. [SigSof 1988]).
In the latter case, for sufficiently short times the bicharacteristics do not reach the singu-
larities of ¢ . In fact, the Fourier integral operators in question are constructed to have
Cg° symbols and their analysis is well within the realm of the second year Calculus stu-
dent. The approximating Fourier integral operators are then expanded by the method of
stationary phase.

The second ingredient is a multiscale analysis. There are three scales in the problem:
momentum scale determined by the quasiclassical parameter g ~ |Z |_% , space scale,
£(z) , determined by how the potential behaves under differentiation and the energy scale,

f(x), determined by the size of the potential. The first scale is constant while the other

two depend on z . In our problem
{(z) = dist. of z to the singularities

and f(z) =£(z)~'. At each given point outside of the singularities we rescale the problem
using the scales at this point in such a way that the problem is mapped into one on

a unit ball with a smooth potential which is bounded together with all its derivatives
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independently of the scales involved and with a new quasiclassical parameter, «, defined in
terms of the old one and all the scales. The new problem admits a quasiclassical expansion
(in powers of ), as discussed above. This implies a quasiclassical expansion for the
original problem outside of small balls around the singularities of the effective potential
#(x). The remainder in this expansion is bounded in terms of an explicit combination
of all the scales times an absolute constant. The remarkable fact here is that since the
subprincipal symbol of P is 0, the second term in the asymptotic expansion is zero. In
estimating the remainder the fact that the sum of the eigenvalues is given by the trace of
a function of P which is once differentiable at the origin is crucial.

In a small ball around a singularity we replace our operator by one whose potential
represents the leading singularity at this point. We estimate the spectral function of the
new operator more carefully using its special form: that of hydrogen-type Hamiltonian. In
fact, we use the spherical symmetry of the new potential. Similarly to the way [SiedWeik
1987,1989,1991] proceeded with the original problem we decompose our local trace into the
angular momentum channels, use the explicit form of the eigenvalues to sum up the low
angular momentum channels and our original quasiclassical expansion, in order to treat
the high ones. At this stage, when we sum up explicitly the contribution of the low angular

momentum channels of the Hydrogen Hamiltonian the Scott correction is produced.

Notation. We use the following standard conventions for the derivatives: 0, = grad,
dim

(the gradient in z), 0, = &, 92, = 0,0, etc., and 02 = ‘H1 0% for a multi-index
1=

a = (a1, a9,...). Moreover, V will stand for the gradient in all the variables involved,
| -]l will denote the trace norm: ||A||; = tr(A*A)z and e;(A) will stand for the i-th

1
2

eigenvalue of a self-adjoint operator A, counting the multiplicities. (z) = (1+ |z|*)2 . In

the rest of the paper C' stands for various constants independent either of N, Z and R

orof # and y, or of «.
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2. Mean Field Theory

In this section we reduce the problem of estimating the ground state energy of H(Z, R)
to one of finding the quasiclassical asymptotics for the sum of negative eigenvalues of an
effective one-particle Hamiltonian. The latter describes the motion of a particle in the
external Thomas-Fermi potential, i.e. the nuclear potential V (z, R), screened by a mean
electron charge distribution. In the rest of this section we use extensively results from
the Thomas-Fermi theory of Coulomb systems. We refer the reader to [Lieb 1981] for an
excellent review of the subject. Here we mention the following facts. In order to define the
first term in £TF(p) one has to take p € L3 . The physical origin of p dictates p € L.
This already suffices for £TF (p) to be well defined and bounded from below. To see this

one observes that |z|~' € L? + L which implies that

sl < Callolly + Calll

The latter inequality yields that the second and the third terms in £T¥(p) are finite in

absolute value as well as that £TF(p) is bounded from below as

E™(p) > Aloll} = CrlZlllollg
— ColZ][lpll

with C; and C5 independent of 7, R and M . Furthermore, it is readily shown that
ETF(p) defined on the set L' N L3 , p >0 and f p = N, is lower semicontinuous in
the weak topology of L3 . This and Banach-Alaoglu theorem imply that the infimum
of ETF(p) with the side conditions [p = |Z| and p > 0 is attained in L' N L3 . The
inequality above shows that the LP -norms with 1 < p < g of the p minimizing £TF (p)
are bounded by C|Z|"% with C independent of R and M .

Next, analyzing directly expression (1.4) for £TF(p), one sees that this functional is

strictly convex

ETF (tpr+ (1 —t)ps) < tETF(p1) + (1 — )™ (p2) ,
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provided 0 < ¢t < 1 and p; # py. Since the set on which we minimize £TF(p) is also
convex, we have that the minimizer of £TF(p) is unique.

According to Thomas and Fermi, for large N the electron density in the ground state
is well approximated by some mean electron density, namely the one, pz(z, R), which
minimizes the Thomas-Fermi functional, £TF(p). Hence the potential experienced by any

one electron is approximately
—¢z(z,R) = —Vz(z,R)+ |z| ' % pz , (2.1)

i.e. one produced by the nuclei screened by this mean electron density. ¢z is called
the Thomas-Fermi potential; it will play an important role in our analysis. Using some
convexity analysis one can show that the Euler-Lagrange equation for the minimizer pz
is of the form

2%

3
= ¢z > 0 (2.2)

pz =

(provided |Z| = N) (see [LiebSim 1977, thms 11.20 and IV.3]). Note that the equation

(2.1) implies that in the sense of distributions
—A(bz(x) = 471'(2235(.73 - RJ) - pz(.’E,R)) .

The Thomas-Fermi theory has a simple scaling property which we will use later. Using

that

Vz(z,R) = B *Vpsz(8 'z, 'R) (2.3)

one concludes readily that the Thomas-Fermi functional for the potential Vz(z, R) eval-
uated at a density p(z) equals 3~7 times the Thomas-Fermi functional for the potential
Vaaz(z, 7' R) evaluated at the density 3°p(Bz). Using the uniqueness of the minimizer

we conclude that
pz(z,R) = B ®ppsz(B 'z, 'R) (2.4)
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and that (1.5) holds. Using relation (2.4) together with either (2.1) and (2.3) or with (2.2),
we conclude that

¢z(z,R) = B *¢psz (6 2,87 R) . (2.5)

The Thomas-Fermi energy ETF(Z, R) is, in fact, the quasiclassical energy of a gas of

|Z| non-interacting Fermions in the external potential —¢z(z, R) . Indeed, the quasiclas-
sical Fermi energy of such a gas in the ground state is 0:

2/p§0dacd§ = 2%(37{'2)_1/¢2($,R)%d$

/pz(a:,R)da: = |Z|,
where p(z,€&) = 3/£|* — ¢z(z, R), the classical Hamiltonian of a single Fermion. Here

we have used Thomas-Fermi equation (2.2) and the normalization of pz. Hence the
quasiclassical energy of this gas is

2 5
2/ pdmdfz——/gb?’.
p<0 157T2 z

Now the Thomas-Fermi equation (2.3) implies

[ 6 = @ [0} and [ oz

— )} [}

The last three equations together with the definition of ET¥(Z, R) (see e.g. eqn (1.4))
yield

2/ pda:d§ = E(Z,R)-l—DTF
p<0

(2.6)

This relation is, in fact, the Virial theorem of the Thomas-Fermi theory (see [LiebSim

1977, thm I1.23, Lieb 1981, thm 2.14]) and it is a consequence of a scaling property of the
Thomas-Fermi potential under the map p(x) — t3p(tx) .

Our next task is to derive estimates on ¢z (z, R) needed later. These estimates extend

somewhat earlier results of [LiebSim 1977, thms IV.5, IV.10] and their proof proceeds

along similar lines. To make future references more convenient we change the symbols for

12



parameters and in the next theorem deal with ¢ (z,y) instead of ¢z(z, R). We introduce

the scale functions

L) = Lz,y) = mjin|a:—yj\, (2.7)

flz) = £(z)"7((x))% . (2.8)

Theorem 2.1. The Thomas-Fermi potential ¢ is smooth (in z ) outside the points

Y1,-..,Yym and obeys the estimates
0" pa(z,y)| < Cy(min X))~ f(z)*4(z) "] (2.9)
for any multi-index v and uniformly in y, M and in A. Here £(z) and f(z) are defined
in (2.7) and (2.8), respectively.
Proof. We begin with

Lemma 2.2. Denote by ¢%(z) the Thomas-Fermi potential of the z-atom. Then

Z)‘ z= 1$—y1) < ¢ (a:,y)
(ZA z= lx_yj)%)%'

Proof. We follow closely the proof of [LiebSim 1977, thm V.12]. We omit the subindex

(2.10)

A at p and ¢. Note first that by the definition of ¢y (z,y)

(- é? 6@~ 5) + p())

Let B = {z € ¢ | p(z) > Y Ajpj(x)}, where pj(z) = p™(z —y;) with p(z),
the Thomas-Fermi density of the (2 = 1)-atom. Let ¢ = ¢ — > Aj¢;, where
¢j = ¢ (z —y;). Then —Ayp = 4x(—p+ > Ajp;) and therefore —Ay) < 0 on B,
i.e. 1 is subharmonic on B. Hence it attains its maximum either on 0B or at infinity.
Since ¥» = 0 on 0B and at oo, we conclude that ¢y < 0 on B. On the other hand,

B C {z € 4| ¢(z) > 0} and therefore B = ¢. The latter fact is equivalent to the
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inequality p < ) A;p;, which, due to the Thomas-Fermi equation (2.2), can be written
as the upper bound in (2.10).

To prove the lower bound in (2.10) we consider the same function 1 as above and
the set D = {z € | ¢(z) < 0}. Since Y Aj¢; < (3 )\jgb]%)% , which is true due to
>>Aj =1, we have that

D Nipi—p = Z)‘j(b;'% — ¢
> (D Nids)? - 92 .
Hence ) Ajp; —p > 0 and therefore —At >0 on D. Thus ¢ is superharmonic on D .
Consequently it takes its minimum on @D or at infinity. Since 9 =0 on 9D and at oo,
we have that ¥ >0 on D,ie. D=¢. Thus ¢ =¢ — > Aj¢p; > 0, which is our lower
bound.
Now the comparison argument, given in the proof of [LiebSim 1977, thm IV.10],

applied to ¢ (x), yields

z=1
Crmin(|z| ™1 |z[7*) < ¢l (2) < Comin(lz|™", |2|7%) (2.11)

for some (absolute) constants 0 < C7; < C3 < oo. The latter inequality combined with
(2.10) yields

Ci(min \))f(2)?* < ¢a(w,y) < Cof(x)? . (2.12)
Hence by Thomas-Fermi equation (2.2), there are 0 < C3 < C4 < oo, independent of y

and of A, s.t.

Cs(min )2 f(z)® < pa(z,y) < Cuf(z)®. (2.13)

Now let zo & {y;}, £ = (minA;)¢(zp) and f = f(xo). In the rest of this proof O(£~7),
etc, stand for estimates uniform in 8, y, A and M. Let 6 be smooth, supported in

N\B(zo,2¢) and =1 in ¥\B(zo, 3¢) and obeying 0Y0 = O(¢~"). Then

Va—|z|7t % (0pn) = é1

14



is a harmonic function in B(x, %E) . Writing it as a Poisson integral over the boundary

of B(wo, 3¢), we obtain

8u¢1 — O(f2£_|y|)

in B(zo, ££) . On the other hand, by (2.13) and since (1—6)py is supported in B(zo, ££)
we have

o (|e "« (1= 0)ps) = O(*E)
in B(zg, 3£) for [v| < 1. The last two relations yield
"¢ = O(f2~ (2.14)
in B(zg, z4) for [v| <1. By (2.2) we have that
Opx = O(f*¢")) (2.15)

for |v| < 1. Using this and repeating the argument above we arrive at (2.14) for |v| < 2.
This together with (2.2) and (2.12) yields (2.15) for |v| < 2. Iterating this procedure, we

arrive at (2.14) and (2.15) in B(zg, 3£) for all v.
Equation (2.15) implies
0" pa(z,y)| < Cy(min X)W f(a)?e(z) ", (2.16)

which together with (2.1) yields (cf. [LiebSim 1977, thm IV.5])

hwy) = 3 ) (2.17)

|z —

with ¢™8(z) smooth outside yi,...,yn and obeying
10 ¢™8(z)| < C,(minA;)~ 1 We(z)G=PD-(p(z))~ 3t G- WD+ (2.18)

The Schrodinger operator of N independent Fermions moving in the effective external
potential —¢z(z, R) is
. Yoo
H‘ll’ld(Z’ R) = Z ( — iAl — (bz(mi, R)) — Drp (2.19)

=1
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N
acting on the Fermi space A L?(3 x 3). Here Drp is the number compensating for

=1
overcounting the electron-electron interaction in ¢z .
R) R
Drr = //”Z “"‘ pz‘y ) dwdy . (2.20)
r—y

Let E™™4(Z R) be the ground state energy of H*4(Z R):
E™4(Z R) = infspec H™(Z,R) .

The following theorem closely related to results of [Hughes 1990, NarnThirr 1981, Sied Weik

1987, 1989, FeffSeco 1990] obtained for atoms, is the main result of this section.

Theorem 2.3. As |Z| — oo so that minZ; > 6|Z| with 6 independent of Z, the

following relation holds uniformly in R :
E(Z,R) = E™(Z,R)+0(|Z]3) . (2.21)

Proof. We introduce the one-particle Schrodinger operator

1
P = -;A- ¢z(z,R)  on L*(®x3). (2.22)
Let Ei, E,,... be the negative eigenvalues of P labelled counting their multiplicities in
order of their increase and 11,19, ... be the corresponding eigenfunctions. We set F; =0

and ¢; = 0 for ¢ > the total number of negative eigenvalues of P . Denote

= Yl (223)
and
N -
v(z,y) = Zwi(x)ﬁm(y)- (2.24)

Note that v and ~ are the one-particle density and one-particle density matrix, respec-

tively for the ground state of H™™4(Z, R). In this section we use the shorthand

/ / p(z)o(y) / /
M—y z—y|
We begin with a result known to experts (see [Lieb 1979, NarnThirr 1981, SiedWeik

1987,1989]).
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Theorem 2.4. Let y =v — pz. Then there is a constant C independent of Z and M

// & —y] __// |a;|7—‘2y| (2.25)

> E(Z,R) — E™(Z,R) > —CM?3(xZ;)?

S.t.

Proof. We begin with a lower bound. Namely, we show that uniformly in 7, in M
and in R
E(Z,R) > E™(Z,R)-CMz|Z|% . (2.26)

N
Let 3 be any function in A L?(® X 5), normalized as > [|¢|*> = 1. (Remember
=1 spins
= |Z|.) We associate with it the one-electron density

pyp(z1) = N Z /|¢ r1,01...,2N,0N)|%dzs, ..., dTy . (2.27)

01,---,ON
/pw = N.

(%, Y | — x5 )
i< (2.28)

1 Py Py / 4
> = —C | p?
~ 2 / / |z —y| Py
with C' independent of N . To estimate the last term we use first the Holder inequality
4 201 1
[oi < ([ob¥([on?
i (2.29)
5.1
= N[ o

and then the Lieb-Thirring inequality (see e.g. [LiebThirr 1975])

Note that

It is shown in [Lieb 1979] that

N

N
[el < w-Y am. (2.30)
=1
Assume now that 1 is s.t.
N
Y Aw) < CMNF (2.31)
=1

17



with the constant independent of N and M . Then
4 1 5
/ py < CM=N3s .
This together with (2.28) yields

(W, ) |z — ;|7 0)

1<J

Zl// Py Py _CM%Ng
2 |z =yl

with the constant independent of N and M . Now we transform

}// PyPy // py — pz)(Py — pz)
2 z—yl [z — y|

// PZ Py // pPzZPz
+ T a ’
lz—y| 2 |z —y]

(2.32)

(2.33)

(2.34)

where, remember, pz is the Thomas-Fermi density. Combining the last two relations, we

derive

e )

1<j

// PZPy

lz —yl

// Py — Pz) pw—pz)_CM N
T —y|

Note that the first term on the r.h.s. can be written also as

//|pm - <¢7 (ﬁ:\wil‘l*pz) w> .

=1

N[
wlot

The last two relations yield

(¥, H(Z, R)¢)

N

> ) (- DAL= Vil R) 4 il 5 p2) )

—Dyp+ — // Py — Tj_ﬂyzz[—pz) oMiNS

with the constant independent of N and M .
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Now we show (2.31) for any ¢ € D(3.A;) obeying (¢, H(Z, R)¢)) < M|Z|5 . We

use that
N
MIZIE > (0, HZRW) = (6,3 > A+ (b, i) | (2.38)
i=1

where

N
H, = Z(— %Az —Vz(xi,R)> +Z|.Ti—$j‘_1
=1

1<j

N
acting on A L?(? x 2). By the Lieb-Thirring bound ([LiebThirr 1975])

i=1

H, > —CM|Z|3 (2.39)

with the constant independent of Z and M . Eqns (2.38) and (2.39) yield (2.31). Note
that a bound, weaker than (2.39), namely with M replaced by M? | is straightforward.
Indeed

H > T,

where

Mz

- —A — Vz(zi, R)) , (2.40)

z:l

N
acting on A L?(3 x ). This inequality is obtained by dropping from H; the

=1
M
positive electron-electron potential. Next, since (2.40) = >  A;, where A; =
=1
N Z;
‘21 (—ﬁA TioF; |) the lowest eigenvalue of (2.40) is bounded from below by the
1=

lowest eigenvalue of

N/
> <—§Az‘ _M|Z||37i|_1>

acting on /\ L%(3 x 5). The latter can be computed explicitly. It is 2 times the sum of
=1

the first & eigenvalues (counting the multiplicities) of the operator —1A — M|Z||z|~?
N

on L?() and is O(M?|Z|5). Then (2.37) holds for any ¢ € D(>. —A;) obeying
i=1

(. H(Z,R)y) < M|Z|5
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Using the definition of H™4(Z, R) we rewrite eqn (2.37) as
(¢, H(Z,R)) > (,H"(Z,R))

// by —pz)(Py —P2) _ pri iy

lz —y

(2.41)

c.c|cx

and note that this equation implies (2.26).

Now we derive an upper bound on E(Z, R). Let K be the minimum of N and the
number of negative eigenvalues of P. Then, since K < N, we have by the HVZ theorem
that

E(Z,R) < Ex(Z,R), (2.42)

where Ex(Z,R) is the infimum of the spectrum of H(Z, R) but with N replaced by K .

On the other hand by the variational principle and our convention about the FE;’s and

lﬁi ’s.

Ex(Z,R) < " (w), (2.43)
where ¥ = (¢1,...,9n) and ¥ is the Hartree-Fock functional:
al 1
e"(T) = Zm (= 58 = Vz(, R))v)
(2.44)
S
|z =y z—yl’
where v and 7 are defined in (2. 23) and (2.24). We transform

// =
_ + —_—,
2 z —y |z — y|

where, recall, u = v — pz . Substituting this expression into (2.44), recalling definition
(2.22) of P and remembering that 1); are the eigenfunctions of P corresponding to the

eigenvalues E; , we obtain

ZE — Dty

//\x—y\ ‘%//uhfm '

(2.46)




This together with (2.42) and (2.43) yields the upper bound from (2.7). Since the lower

bound was proven in (2.26), this completes the proof of theorem 2.4.

Recall that we are interested in the asymptotic behaviour of E(Z,R) as Z — oo

along a direction A = (A1,...,A\n), i.e. we set

Z; = NB3 i=1,...,.M (2.47)
with the \;’s fixed and (3 varying, # — 0. Picking ¥\; = 1, we have [ = \Z|_% . Let
y = f7'R. Equation (2.5) can be rewritten as

¢z(z,R) = B¢\ (B7"2,y) . (2.48)

Now we rescale the operator P . Let

(UB)(x) = pry(pe) (2.49)
the unitary family scaling z — Sz . Then for Z = 73\ and R = By

UBPUB) = B 'Kg, (2.50)
where Kj is the Schrodinger operator acting on L?(3 x 2) and given by

Ky = —50°A, — 6a(,y) (2:51)

Let e;(K) denote the ith eigenvalue of an operator K (counting the multiplicities)

and let

Kr.6) = 5P — balry) (2552
For ¢ € 4, d¢ will denote the Lebesgue measure divided by (27)~%.
Theorem 2.5. Let Kg be defined in (2.51) with ¢ obeying (2.9). Let min\; > §

with 6 > 0 independent of 3. Then the number of eigenvalues of Kg not greater than

p < —p4 for some A >0 verifies the following asymptotic expansion

#{ei(Kg) < p} = 267 / dudé + O(87?) . (2.53)

k<p

21



Here the remainder estimate is uniform in u,y and in \.

Proof. The statement follows from theorem 8.9 with s = 0 and d = 3 from the

relation

#ei(Kp) < p} = tr B(u, Kp) (2.54)

where F(u, A) is the spectral projection on (—oo, u] for an operator A. The factor 2
comes from the fact that Kz in theorems 2.4 and 8.6 acts on L?(3 x 2) and on L2(3),
respectively.

This result must be compared with analogous results in [Chaz 1980, Ivrii 1986, Rob

1987, Tam 1984] for assumptions on the potentials which are somewhat stronger than ours.

Remark 2.6. The leading terms in (2.53) can be computed more explicitly:

23 3
2 / dode = — [(gr+pw)ids . (2.55)
E<p 61

Next, let exy = en(Kg) if N < the total number of eigenvalues of Kz and ey =0
otherwise. In other words, ey is the Fermi energy. Here N = |Z| = 373, the number of

electrons.

Theorem 2.7. (Estimate of the Fermi Energy) We have uniformly in the y and A\
en = O(B3). (2.56)

Proof. First, recall that ¢, is the potential of the neutral Thomas-Fermi theory

with Y \; electrons. Hence the Thomas-Fermi density py satisfies (2.2) and

Now rewrite the expression (2.56) for p=0:
2 / dedé 2 / $2d
zdf = — T
k<0 3r2 J A (2.58)
DI VI
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According to our convention ey is either 0 or ey < 0 and obeys, due to (2.58) and

theorem 2.5 with py =epn,
5 2% 3
B°N = ﬁ/(ﬁb/\-l-e]v)i—i-O(,B) . (2.59)
Substracting (2.57) from this equation and remembering that 373¥\; = N, we obtain
3 3
[i@x+ewi-ad) = 09 (2.60)
We estimate the l.h.s. from above. Remembering that ey < 0, we obtain
3 3
/[(bi — (éx +en)i]

3
> f b3 .
Pr<—en

This inequality together with eqns (2.12) and (2.60) shows already that —ex < 1. Next,

(2.61)

using (2.12), we derive

freu®

for some d; > 0 independent of 3, of M, of the A;’s and of the y;’s. Using an

> ol

> §;(min A;)? / {(z)~® (2.62)

L(z)~*<—en

elementary estimate

/ {(z) Cdz > / {(z) Cdx
Lz)>p 2p>4(z)>p

- Z/;pZIm—yjIZP |$ B yj|_6d$
J Le)=lo—y;]|
> (2p)7° ) meas{z | p < £(z) < 2p, £(z) = |z — y;[}
J
> (2p) ®meas{z | p < {(z) < 2p}

w4

:Ep )

we obtain furthermore

o

/ 6 > o(min \;)% (—en) (2.63)
dr<—en
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with 6 > 0 independent of 3, of M , of the A;’s and of the y; ’s. The last two inequalities
imply

/ (6% — (¢ +ex)?] > 6(min )

M9

(=en)?
with § independent of 5 and the y;’s, which together with (2.60) implies (2.56).

Denote by e(x,y, u, Kg) the Schwarz kernel of the spectral projection E(u, Kg). Let

60(337:[1’7 Kﬂ) = ﬂ_?) d& -

k<up

(2.64)
32%

We restate here corollary 11.7 from section 11 for d = 3.

Theorem 2.8. Let Kg be the Schrédinger operator defined in (2.51) (and d = 3).
Assume min\; > 6 with ¢ independent of 3. Then for any p <0

e(x,z,u, Kg) —ep(x, u, Kg)[Pdx g

([ lel.2.m. K) = eale . K i) -
< op?

with C independent of B, A\, y and p.

We use this theorem in the proof of the following

Lemma 2.9. Let, as above, u =v — pz , where v is given in (2.5). Then

// PR < c1z)% .
lz —y

Proof. Due to (2.51) we have for Z = 373\ and R = By

(2.66)

bi(x) = B3 p(F ), (2.67)

where ¢; are the eigenfunctions of Kz considered on L?(3 X 3) corresponding to the

eigenvalues e; = e;(Kg) = B*E; | if i < the total number of eigenvalues of K g,and =0
otherwise. Hence

N N
D@ = 7Y (7))
=1 =1
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By the definition of ey
N
Z|QO1,($)|2 = e(x,gjaeNaK,B) 3 (269)
i=1

where, recall, e(x,y, A, Kg) is the Schwartz kernel of E(\, Kg). Hence
N
v(z) = > [i(@)]> = Be(B 'z, B, en, Kp) - (2.70)
=1
Next using (2.56) and (2.64) and the Thomas-Fermi equation (2.2), we find
colw,en, Kg) = B pa(a,y) + O(M3575[g]7) . (2.71)

Thus remembering the scaling property (2.48) of the Thomas-Fermi density and scaling

relation (2.70), we derive

p(x) = Bm (B '), (2.72)

where
/1’1('/1:) = 6(33, Z,EN, Kﬂ)
(2.73)

N

—eo(z,en, Kg) + O(87 3¢

Using this, we rescale the integral

== (274)

Next, we apply the weak Young inequality

[ ]2 < clumlys (2.75)

z —y

) -

Next using (2.73), theorem 2.8 and the fact that [ $3 < 0o, we find
lualy < CB72. 270
Equations (2.74)—(2.76) imply (2.66).

Theorem 2.4 and lemma 2.9 yield equation (2.21). Theorem 2.3 is proven.
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Remark 2.10. There is a trade-off between analysis of this section and that of section
8 required for theorem 2.5. The latter can be simplified (at the expense of the former)
if one replaces the potential ¢y (x,y) in definition (2.51) of Kz by a deformed potential
éa,8(x,y) which differs from ¢y (z,y), more precisely, which changes the sign at large z.

Such a potential can be defined as follows

dr5(2,y) = oz, y)x (65 Ls(x,y))

2 (2.77)
- ﬂ2£ﬁ(m7 y)_IY(ﬁgﬂﬂ(xu y)) )

where x € C3°() and is supported in (—2,2) and = 1 in [0,1], X = 1 — x and

L(z,y) = wg(z) *x £(z,R) . Here wg(z) = ,Bgs_lw( ; 2) with ¢ > 0 sufficiently small
I 3
and w € C§° and supported in B(0,2) and =1 on B(0,1). Equation (2.9) implies that

the deformed potential ¢ g(x,y) obeys the estimates
0”¢x,5(z, )| < Cy(min )~ fi(2) ()~ (2.78)

where

filz) = max (f(z), Bl(z)7?) . (2.79)
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3. TF Gas and Weyl Asymptotics

In this section we establish a quasiclassical asymptotics for the sum of negative eigen-
values of Kg as 8 — 0. The proof is obtained by patching together results of sections
8-10. After that we relate the mentioned asymptotics for Kz to that for the ground
state energy E'™4(Z,R) as Z — oo. Combining this with theorem 2.1 we conclude that
theorem 1.1 is valid.

Since H™4(Z, R) acts on }V\ L?(3 x 5) and since the variables zi,...,zx in it

=1
separate, we have

N
E™(Z,R) = Y E;- Dy, (3.1)
=1

where, recall, F; are the eigenvalues of P labelled in order of their increase and counting
their multiplicity (see the paragraph after equation (2.22)). This is a well known relation
in Quantum Physics and is a consequence of the Pauli principle: at most two electrons

(the double degeneracy corresponding to 5 ) for an energy level. We begin with

Theorem 3.1. Consider the Schrodinger operator Kz on L?(®) with a potential ¢(x)
obeying (2.7)-(2.9) with a = min{|y; — y;||i # j} > B3¢ for some ¢ > 0. Assume
min A; > 0; with 6; > 0 independent of 3. Then for any 6 > 0
)" ei(Kpg) = Weyl + Scott + O(a™387577) (3.2)
e; <0

where the remainder estimate is uniform in the y; s and in A; ’s, restricted as above

Weyl = 73 / / k dzdé (3.3)
k<0
and
E .
Scott = %3_2. (3.4)
Proof. Let
_ Jo ife<0
9(o) = {o if o > 0. (3.5)
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Then

> ei(Kp) = trg(Kp) . (3.6)
e; <0
Introduce a smooth partition of unity, v¥g,..., %,
M
=1 (3.7)
i=0

with the properties

for i > 1, 1; is supported in B(y;, 2r)

. (3.8)
1o is supported in °\ U B(yi,r) ,
=1
where 7 > 0 obeys
1 1
PSS g (3.9)
for some & > 0. We will choose r later. Then
trg(Kp) Ztr ¥ig(Kg)) . (3.10)

Since g obeys the conditions of theorem 8.1 with s = 1, theorem 8.9 with d = 3 and

s =1 is applicable and yields

tr (Yog(Kp)) = 6~ /g(k)¢°d$d5 (3.11)
(8

+ 0 _17“_%) .

By theorem 9.1 with d =3
|tI‘ (d’lg KB wzg( ))
g / [ 6la® - g(ko)dode] (3.12)

T e g
provided 8379 <r < 3a for some 6 >0, i>1,

1 i
Kip = —sfA— 2
# 2 |z — v

(3.13)
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and
Ai
z—yil

ki@ €) = Slel* -

Finally, by theorem 10.1
tr;9(K; g)

e //wzg )dde

—gjﬂ” +0(p7'r2)
with > 1.

Equations (3.12) and (3.15) yield for ¢ > 1

|tr (ig (Kp)) / / Yig(k)dzdé

+ 2 < o(ptrat 4 g

D=

) .
This relation together with equations (3.10)—(3.11) implies

rg(Kp)=0° [ [ ghydodt

1
+ GINBT? < CB e 57T

D=

) .

Comparing this with (3.6) and choosing r = B3 %3 | we arrive at (3.2).

Proof of theorem 1.1. First we show that

#{0 > ei(Kg) > 6N} = O(ﬁ_z) .

Indeed, due to (2.53),
#{0 > ei(Kﬁ) > eN}

= p® / dzde +O(872) .
0>k>en

Equations (2.55) and (2.60) yield

/ dedt = 0(B) ,
0>k>en
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(3.19)
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which together with (3.21) implies (3.20). Equations (3.20) and (2.53) yield

D lei®p)| < len|#{0> ei(Kp) > en}
i>N (3.23)
< Cps .

Recall that k(z,&) = %\£|2 — ¢a(z,y), where ¢, is the potential of the neutral
Thomas-Fermi theory with nuclei of charges A1,..., Ay located at vy, ..., yr - Equations

(2.5) and (2.6) yield

-3 _ -3 ' TF
23 / / ksokdazd& — B3ETF(\,y) + Drp . (3.24)

Equations (3.23) and (3.24), together with (3.2), imply

SA2 L
ei(Kg) = BPE(\y)+ 877+ Drr +0(a™34757°) (3.25)

=1

provided |y; — y;| > B3¢ for all i # j and some ¢ > 0. Now, due to relation (2.50),
E’Z = 13_467:(Kﬂ) s (326)

where FE;, recall, are the eigenvalues of P . Taking into account the scaling property of

the Thomas-Fermi energy
E™(Z,R) = BTTE""(\y) , (3.27)

where Z = 373X and R = [y, we derive from (3.25) that

»Z?2
4z + Dyp +0(a™3|Z|5+0) |

N
Y E; = E™(Z,R)+

=1

provided |R; — R;| > |Z |=5+¢ for all i # j and some e > 0. This relation together with

equations (2.21) and (3.1) implies (1.8).
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4. Energy Bounds

In this section we prove two kinds of estimates: bounds on the momentum in terms of
energy and bounds on accessibility of energetically forbidden regions of the phase-space.
Both bounds are needed in the following sections. Though the latter bounds have obvious
classical meaning the operators involved are not pseudodifferential. In other words we
obtain results, which normally follow from symbolic calculus, for non-symbolic operators.
In a different context such results were obtained earlier in [SigSof 1987].

In this and the next three sections we consider a self-adjoint operator

2
«
on L2(%). Here a > 0 is a quasiclassical parameter about which we assume only that

a < 1. We assume that W(z) is real, is in L2 _ and obeys the Kato inequality

loc
C
WA < ellafli+ S/ (4.1)

for any f € D(A) for any € > 0 and with C independent of e. (4.1) is satisfied for

Kato potentials, i.e. the potentials from LP(¢) + L*(4) with p > ¢ for d > 4 and

p=2 for d <4 (see e.g. [CFKS 1987]). Under the last restriction H, is self-adjoint on
D(H,) = D(A).
Note that a standard interpolation argument (see e.g. [RSII, thm IX.20] and (4.1)

yield that
WD < e=AL )+ SR (1.2

(see e.g. [RSII, thm X.18]).

Lemma 4.1. Let W obey (4.1). Then
IA(H + )7 < Cmax(a™®,a7%), (4.3)

IV(Hy +9)71] < Cmax(a™!,a™?) (4.4)
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and

IV(Hy +4)7V| < Cmax(a™2,a7%). (4.5)

Proof. Using

IAf < 2072 (| Haf || + W £1])

and (4.1) with € = 1a? , we obtain

1
4
IAfIl < 4a7?||Hof|| + Ca™®| f]

which implies (4.3).

Next, let u = (H, +14)"'f. Using that ||Vu||? = (—Awu,u), we obtain

IVal? = 25 (o i) + (W = i),

Applying (4.2) with e = %2 to the last term, we obtain

C

2 , 1
IVull® < =5 ((H +du, )| + S [Vul® + —Zllu* . (4.6)

Since (H +i)u = f and ||u|| < ||f]|, this yields (4.4).

Finally, to prove (4.5) we note that (4.6) with u = (H, + i)'V f yields
4 C
2 2
IVl < A+ Sl

Since by the previous result |[u]] < Ca™?2||f||, this yields (4.6).

In what follow |4, = (tr|A\q)% , the I, -trace norm of the operator A (see [RSII,

p. 41] for the definition and properties used below).

Lemma 4.2. Assume W(z) obeys (4.1). Let ¢ € C§° and |0"¢(z)] < C,. Let n =
[%] +1. Then for « <1

l9(Ha +4) "1 < Ca™*" (4.7)
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with C independent of « .

Proof. We conduct the proof by induction. As a result it is convenient to prove a

more general statement:

¥ (Ho +1) ™2 < Ca™%™ . (4.8)

First we prove this statement for m = 1. By a property of the trace norms
19 (Ha +3) "l

< (= + 1) " Hlall (A +4) (Ha +3) 71|

(4.9)

Since n > g , then by a standard result the first factor on the r.h.s. is bounded. By (4.3),
the second factor is bounded by const - a=®. Thus (4.8) with m =1 follows.
Now we assume (4.8) is valid for some m > 1 and prove it for m+1. Let ¢, € C§°,

=1 on supp®, so that ¥; =9, and obey [0¥11(z)| < C, . Using that
(0 (Hat i) = a(Ho+i) Ly(Ha )" (4.10)

where

Ly = —aV-(Vy) - S(A9), (4.11)

and that ¢ = 19y, we obtain

¢(Ha + i)_m_l = qpl(Ha + i)_lqp(ﬂa + i)_m

(4.12)
+ a1 (Ho +14) "Ly (Ho + i)™ 1.
Writing L, = Ly, and repeating this procedure in the last term we arrive at
'@b(Ha + i)_m_l = wl(Ha + i)_l[w + O‘Ld)(Ha + 7:)_171)1
(4.13)

+ a2L¢(Ha + i)_1L¢1]¢2(Ha +i) ",
where 1 = 1 on supp®; and obeys ¥, € C§°, (0”92 < C,. By lemma 4.1 the

expression in the square brackets is bounded. Hence by a property of the trace norms

19 (Ho + )7 | 2y

m-+1

< Cllp1(Ho +8) 7 Hlnllt2(Ha + 1) ™[ 2

(4.14)
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By (4.8) with m = 1, proven above, and by the induction hypothesis the r.h.s. is bounded
by Ca~%(m+1)  This yields (4.8) with m replaced by m + 1. The induction step is

completed.
We will also need the following statement:

Lemma 4.3. Assume W obeys (4.1). Let 1) € C*° . Then
|V (Ho +4)7 Y| < Ko™t (4.16)

where K = [( sup W)y + 1] sup [¢)| + asup |V .
supp ¢

Proof. Let R = (H, +i)~*. We have
1
S R**AYR
2 (4.17)
< R**Ho R + sup(W|[9[?) .
Commuting H, through 7 and using that
Re(R*¢*[Ha, Y]R)
= o’R*|Vy|?R
and using that ||H,R| <1 we obtain that
R*Y*HoyR
< sup [9|* + a® sup [V [* .
This together with (4.17) yields (4.16).

Next we have

Lemma 4.4. Assume W obeys (4.1). Let 9 be smooth and obey |0¥¢(z)| < C, . Then

||Ay(Hy + i)_1|| < Ca_2( supw W|+1)+1. (4.18)
supp

Proof. We have 1
|Ap(Ho + 1) f]]

< S (Ho+ 00 (Ha + )77 (419

2
+ — (sup |[W|+1)sup ||| f]l -
Q" supp
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Commuting (H, + i) through %, we obtain
|(Ho + )3 (Ho +4) 7 ]
< WSl + el Ly(Ha + )71 f]] -
Applying lemma 4.3 to the last term we arrive at
I(He + )¢ (Ho +0) 7 f]

< C[(e( sup W)++].)% + o+ 1][|f] -
supp %

This together with (4.19) yields (4.18).

Proceeding as in the proof of lemma 4.2 but using lemmas 4.3 and 4.4 instead of

lemma 4.1, one proves the following

Lemma 4.5. Assume W obeys (4.1). Let ¢ € C3° and obey |0"y| < C, . Then for
n = [%] +1
[¥(Ha +4)7" 1 < Ca™ " (sup [W|+1)", (4.20)
Q

where Q is e(diam(supp v)) — neighbourhood of supp and C independent of « .

Now we proceed to a less trivial result needed in this and forthcoming sections. This
result shows how in the Operator Calculus we can pass from one Hamiltonian to another.

Denote by B(y,r) aball in ¢ of the radius 7 and centered at v .
Theorem 4.6. Let (a) H, = —O‘;A —W(z) and Hpqo = —%A — Wo(z) with W(x)
and Wy(z) obeying (4.1) and

W(x) = Wy(z) for z € B(0,2) (4.21)

(b) ¢ € C§°(B(0,1)) with |0¥¢(x)| < C, and (c) ¢ be smooth and obeying [0™p(\)| <
C{\)™" . Then for any A > [g} +3

19 (@) (¢(Ha) — ¢(Ho,a)) 11

< ClaL) a2 gl a

(4.22)
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1
where ||¢||a = sup((\)4]02T™p(\)]), L = sup (W(m))i + 1 and C is indepen-
A B(0,2)\B(0,1)
dent of «.

Proof. We omit the subindex « in this proof: H = H, and Hy = Hp, . Let

U:H—HO

= Wy—-W.
By (4.1) and (4.3)
IUH - 2)7 < Ca™®(z)[Imz|~". (4.23)

We begin with

Lemma 4.7. Let ¢ € C§°(B(0,1)) and let 1 be a smooth and bounded function

supported in 4\ B(0,2). Then for any n >0 and for any A >0
|H p(H = 2) ]| < C(aLflmz~)A(z)" (4.24)
and similarly for Hy. Here C' is independent of o and z .
Proof. Commuting H™ factor-by-factor through 1 and using that
[H,f] = aLy, (4.25)
where L is defined in (4.11), we reduce the problem to one of showing that
IX1H™(H — 2)" || < C(aL{Imz| )4 (z)™ (4.26)

for any m >0 and any A > 0 and for C' as above, provided x; € Cg° (B(O, 1+ 6)) and
=1 on B(0,1) and obeys 8”x; = O(1) with & = [ . Next, representing H = H—z+2

and using that x1v¢1 = 0, we reduce the problem further to showing that
x1(H —2)7 1 = O((aL|lmz|"1)4) . (4.27)

Now commuting x; through (H — 2)~! and using that x1%; = 0, we obtain
x1(H —2) "t

= o(H — 2)7 Ly, x2(H — 2) "4

(4.28)
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where x2 € C°(B(0,1+ 2¢)) and =1 on B(0,1+¢) and x» satisfies 9Vx2 = O(1).

Applying the above procedure to x2(H — z)~ 14y , etc., we arrive at
X(H =271 = o T[IH - 2)7 Ly, J(H = 2) " (4.29)

where xj, € C5°(B(0,1+ke)), =1 on B(0,1+(k—1)e) and obey 9xy = O(1). Equa-
tion (4.16), the estimate 0”x; = O(1), the fact that Vx; are supported in B(0,2)\B(0,1)
and the restriction 1 > o2 imply that each factor on the r.h.s. is O(|JImz|~1L). This

yields (4.27). Hence (4.24) follows.

Now we proceed directly to the proof of theorem 4.6. There is a smooth function, ¢,

on %, supported in the strip {(, p) | |u| < 1} and s.t. $(A,0) = (A) and for any A >0

060 )| < llpllalulAFm= 1)~ (4.30)

where z = A+ip and 0; = 0 +10, . To prove the existence of such a ¢ one uses a par-
tition of unity associated with the length scale £(\) = (\) (see section 8) and then applies
a standard extension theorem to each compactly supported piece of ¢(\). Following [HSj

1989], one can represent

= 272//82"5 —2)"tdMdp (4.31)

for any self-adjoint operator A. Using this representation, the second resolvent equation

and the equation H — Hy = U , we find

so(H
-5 / / 9z - ( ) YU (Ho — )" YdA\dp . (4.32)

Denote I, = (H +1)"9(p(H) — ¢(Hy)) . Using this relation and the fact U is supported

in 4\ B(0,4), we transform

—5- / / 0,0A(2)B(z)dAdp (4.33)



where

A(z) = (H+0)"p(H —2) 1, (4.34)

with 1, , a smooth and bounded function supported in %\ B(0, 3) , and
B(z) = UH—-2)"". (4.35)

By lemma 4.7, A(z) = O((aLImz|~")M(z)™) for any M, and by (4.23), B(z) =
O(a~2(z)|Imz|~1) . This together with (4.30) yields that

L]l < Cllfllaca™ =LY (4.36)

forany M >n+1.
Let now 1, € C§°(B(0,2)) and =1 on B(0,1). We write

Y(p(H) — ¢(Ho)) = to(H +i)7"1, . (4.37)

Equations (4.20), (4.36) and (4.37) yield (4.22).

o)

Denote D, = —iagrad, and D; =iag;

. We assume now that in addition to (4.1),

W (x) is smooth in B(0,2) and obeys
|0"W(x)| < C, Vv on B(0,2) . (4.38)

We need the following microlocal estimate saying that operators are quasiclassically small

in the classically forbidden region:

Theorem 4.8. Assume W obeys (4.1) and (4.38). Let g()\) be a measurable function
satisfying sup(supp g) < co and |g(A)| < C(A\)™ for some m and let ¢(z,£) be a smooth
function supported in B(0,1) x¢ and obeying \ag‘ﬁgcp(x, €)| < Cop(é)~1Pl. Assume there
is €>0 s.t. supppNh~t(e—suppg), where e—Q = {A € | dist(\, Q) < e(\)} for Q C
and, recall, h = 1|¢|> — W (), the symbol of H, . Then

lg(Ha)¢(z, Da)lli = O(a?) (4.39)
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forany A>0 and any 0 < a<1.
Proof. Pick up f(A) smooth, supported in € — suppg with e given in the theorem

and obeying |0"f(A)| < Cp{(A)™™™ and f(A) > |g(A)|. Using the definition of the trace

norm (see e.g. [ReedSim II, p. 42]), we derive that

l9(Ha)p(z, Do)l < [[f (Ha)g(2; Do)l -

Introduce an auxiliary potential Wy(z) as

WoeCP@) and =W() in B(o, g) . (4.40)

Let 11 € C§°(B(0,5/4)) and =1 on B(0,6/5). Then by theorem 4.6

1(f(Ha) = f(Hoa))t1(z)[1 < Cot
for any A >0, where Hy, = —0‘2—2A — Wy(z) . By the definition of «-pseudodifferential

operators (see e.g. [Robert 1987])

(1=t1(z))p(x,Dy) = 0
for any A > 0. Next, due to the restrictons on f, since Hp, is an elliptic a-pseudo-
differential operator, then so is f(Ho,) (see [Robert 1987]). Moreover, the a-symbol of
f(Ho,q) is supported in h~'(supp f). Hence using again «-pseudo-differential Calculus

and trace norm estimates, we derive
1f (Ho)e(e, D)1 < Cat
for any A > 0. The last four estimates yield (4.39).

Remark 4.9. We use theorem 4.8 in the following two situations:
a) ¢(z,&) is supported in B(0,1) x (*\B(0,K)) and g(}) is smooth and supported
in |A] < K; with K; and K related as

K = (Ki+1)[(sup W), +2]7 .
B(0,2)

b) ¢(z,§) = (=) with ¢(z) € C§(B(0,1)) and g(\) is supported in
(—00, —suppg(g,,) W) for some p>1.

Finally, we present the following rough estimate

39



Theorem 4.10. Assume W obeys (4.1) and (4.38). Let g be a piecewise continuous
function on obeying |g(A\)| < C(A\)™ for some m and sup(suppg) < co. Then for any
¥ € C5°(B(0,1))

[pg(Ha)l1 < Ca™. (4.41)

Proof. Without a loss of generality one can assume g to be smooth. Let Wy be a
Cg° potential satisfying (4.40). Introduce Ho o = —3a?A — Wy(z) . Theorem 4.6 implies
that

19 (9(Ha) — 9(Ho))lh < Cac? (4.42)

for any A > 0. On the other hand, it is straightforward to show that for n > %

l(—a?A +4)""|; < Ca™@ (4.43)
and then for any n >0
I(—®A+4)"(Hoa+1)7" < C. (4.44)
The last two estimates yield
l4g(Hoo)lh < Ca™?. (4.45)

Equations (4.42) and (4.45) yield (4.41).
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5. Approximate Evolution

In this section and the next one we study behaviour of the evolution group
U(t) = e iHat/a (5.1)

for small times. To this end we approximate U(t), in the relevant part of the phase
space, by a family of F(t), of the Fourier integral operators in a spirit of geometrical
optics and then estimate F(t) by the stationary phase method (see [Lax 1957, Kell 1958,
Masl 1965, Hérm 1968, Kum 1981, Chaz 1980]). In this section we construct F(¢) and
study its properties. An important point here is that due to simple microlocal estimates
of the previous section, F(t) has a C§° symbol. This makes the investigation of F(t) an
exercise in Calculus.

We want to construct a Fourier integral operator
F(t)u = O!_d//ei(s(t’w’g)_zf)/aa(t, z, &, a)u(z)dzdE (5.2)
satisfying (possibly, modulo terms supported outside B(0, g) )
(D; — H)F = O(a™?)
for some A > 0 sufficiently large and
F(0) = ¢(z,Dy) , (5.3)

where ¢ € C§°(B(0,2) x B(0,K)), with a fixed K chosen later, and is even in . Note
that after taking the Fourier integral in z, the remaining ¢ -integral in (5.2) is absolutely

convergent (for sufficiently small times, see the paragraph before eqn (5.10)). Let
L2
hr.&) = L[~ W)

Clearly, estimating (D; — H)F(t) reduces to evaluating (D; — H)(ae's). Taking S

independent of o and equating the coefficient at o in this expression to 0 leads to

8:S + h(z,0,5) = 0, (5.4)
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the Hamilton-Jacobi equation. The initial condition is
S|t:0 = I- f . (55)

Next, picking a of the form
N
a = Zajaj(t,x,g) (5.6)
Jj=0

iS

with N = M —1 and equating the coefficients in (D;—H)(ae™=) at o/, j=1,...,N+1,

to zero leads to the transport equations
1 7
8taj + 058 - 833(1_7' + EA;KSGJ' = —EAmaj_l (5.7)
for 7 > 0 and with a_; = 0 and with the initial conditions
ajlt=0 = 6j,00 - (5.8)
The initial conditions yield
aeiS/a|t:O — Soeimf/a ; (59)
which guarantees, due to the relation

o / / =€/ o EYu(2)dadé = p(x, Dy)uls) |

that F(0) = ¢(x, D) .

The Hamilton-Jacobi equations (5.4)—(5.5) and the transport equations (5.7)—(5.8)
can be solved by the method of characteristics (see e.g. [Arn 1989, Chaz 1980, Kum
1981]). For instance, the unique solution of the Hamilton-Jacobi equations is given for |[¢|

sufficiently small by the action function

S(t,x,n) = z-n-l—/(i-d:v—h)

along the classical trajectory for the Hamiltonian h(z,£) with the momentum 7 at time

s = 0 and the position z at time s = t. Here 2z is the position at time s = 0 as a
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function of ¢, x and 7. Fix the degree of approximation N . Let T; > 0 (depending
of K ) be such that the Hamiltonian flow for h(z,) starting in B(0,3) x B(0, K + 2)
(resp. B(0,2) x B(0,K)) exists for [t| < T; and stays during this period inside of
B(0,2) x ¢ (resp. B(0,%) x B(0,K + 1)). Then decreasing T; depending on N, if
necessary, we conclude that (5.4)—(5.5) and (5.7)—(5.8) with j < N have unique solutions
in B(0,3) for £ € B(0,K+2) and a; € C5°(B(0,3) x B(0, K +1)) for [¢| < Ty . Hence
a € C3°(B(0,%) x B(0,K +1)) for |t <Ty. Thus F(t) is well defined and obeys (5.3).

The expression (D; — H)F(t) will be estimated in the next section. In this section

we study the asymptotic behaviour of F(¢). In what follows we assume that 7' < T; . Let

X € C°([-T,T]) . Then the operator

F,(\) = / F(t)R(t)e *dt (5.10)
is well-defined and, due to the fact that a € Cg°, is trace class.

Theorem 5.1. If A< — sup W — 1, then for any A > 0 and uniformly in \
B(0,2)

IF (Wl = O(a?) . (5.11)

Let i be smooth and bounded on ¢ and supported in |¢| > Ko, where Ky > 2( sup W+
B(0,2)

A+1)? , and let T < min(6KZ,Ty) with 6 sufficiently small and independent of Ko and
K . Then for all A\
IFx(Mn(Da)llr = O(a?) (5.12)

for any A>0.
Proof. The integral kernel of F, (A\)n(D;) is

/ / Rane'®/*dedt

where ¢; = S —2z-&£+ At and the remaining abbreviation is obvious. The Hamilton-Jacobi

equation for S, the relation 9,5 = &+ O(t) and the condition T' < (5K0% imply

1
—0:S > —Kg— sup W
4 B(0,2)
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and therefore —0;¢1 > 1 on supp(xan). Integrating by parts using the relation

Lei¢1/a — ei¢1/a

where
L = —(0:S+N"'D,,

we obtain (5.12). Equation (5.11) is proven similarly if one observes that

—0ipr > —A— sup W
B(0,2)

on suppa.

Let x € C°([-T,T]) and 9 € C*(?) and consider the function

I\ a) = tr'gb/ H)x(t)e/ % dt . (5.13)
Due to theorem 5.1, for any A >0
oA .
I\ a) = 0((—) ) if A<— sup W-—1. (5.14)
A B(0,1)

Using the Fourier integral representation of F(t), we rewrite I(\, «) as

I\ a) = —d/// e/ dtdzde (5.15)

= Yxa

where

and
o(t,x,&) = S(t,z,&) —x-&+ At . (5.16)
In the rest of this section y stands for a phase-space point (z,¢) € 2¢ and dy = dzdf .
Let €y = {y|h(y) = A}, the energy shell at the energy A. If VA # 0 on ExNsupp ¢,
then there is 7 > 0 (depending, in general, on the restriction of |[Vh|™! to & Nsuppyp)
s.t. no periodic orbit of h with a period in (0, 7] passes through points of suppa. This
well-known statement follows from the beginning of the proof of theorem 5.2 below (see
the paragraph containing eqn (5.23)). The next result is rather standard, we give its proof

for the sake of completeness.
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Theorem 5.2. Let x be a smooth function, supported in [—7, 7] and obeying x(0) =1
and X (0) =0 for k=1,2 and let ¢ € C*(B(0,3) x B(0,K)). Let X be a regular

value of h on suppa. Then

I o) = 2ra™% [ edSy + 0(a379) , (5.17)
Ex

where dS) is the h-induced area element of the surface €y, i.e. dSy = |Vh|7!x (Rie-

mannian surface measure on &y ).

Proof. In order to prove (5.17) we use the method of stationary phase. We begin
with a study of the critical manifold of ¢. First, we claim that if VA #0 on &, Nsuppa

and if ¢ is sufficiently small, then the critical manifold of ¢ is

Cy = {0} x &y . (5.18)

Indeed, since
Pli=o = 0, (5.19)

we have that
Oydli=o = 0. (5.20)

Next, by the Hamilton-Jacobi equation
Orp = S+ A

= —h(z,0;5)+ A .
This and the initial condition S|;—¢ = z - £ yield
8t¢|t:0 = —h+ )\ . (521)
Hence
8t¢ =0 on C)\ .

Using (5.21), the fact that ¢ is smooth in all its variables on suppa and that suppa is

compact, we obtain

Ohp = —h+A+0(t)
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on suppa . Here and below O(t™) stands for a smooth symbol of the order |¢|/” on suppa .
Moreover, (5.21) yields
20 |,_,= —Vh, (5.22)

which together with (5.20) implies that
Oy¢ = —Vht+O(t?)

on supp a. Hence if |¢| is sufficiently small, then (5.18) exhausts all the critical points of
¢ on suppa.
To see how large |t| can be taken, we study the critical points of ¢ more carefully.

Due to (5.16), the critical points (¢,z,£) of ¢ obey the equations

oS = —A
0,8 = ¢ (5.23)
855 = I .

Since S satisfies the Hamilton-Jacobi equation with the Hamiltonian function A and the

initial condition S|;—¢ = = - £, we have that

V(m,g)S(t,ZIT,S) = (7772) 3 provided ¢t(za£) = (%77) 3

where ¢; is the flow generated by the Hamiltonian function h. Hence if (tg,y0) is a
solution of (5.23), then ty is a period of a periodic orbit of ¢; passing through yg with

the energy

h(yo) = —(0:S)(to,50) = X .

Thus, we have shown that (i) the critical manifold of ¢ is the union of C, and the set
of all points (¢,y) s.t. t #0, y € Ex and there is a periodic orbit through y which has
the period t and (ii) if A is not a critical value of h on suppa, then there is an interval
I around t =0 (depending on suppa ) s.t. the critical manifold of ¢ on I X suppa is

Cx N (I x suppa) . In particular, this implies that under the above condition on h and
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A there are no periodic orbits of ¢; through suppa with sufficiently small periods and
therefore 7 defined in the paragraph before theorem 5.2 is positive and C) is the critical
manifold of ¢ on suppx X suppa.
Next, we compute the Hessian, ¢, of ¢ on the critical manifold (5.18). First, we
note that
02pli—o = —EOW . (5.24)
Indeed, using twice that S is a solution to the Hamilton-Jacobi equation, we obtain
085 = —0u (50.57 - W)
= —0,802,8
— 0,50, (%(amS)2 - W(x))
= 0,5 (Hessian,S)0,S — 0,50, W .
Applying now the initial condition S|;—p = z - ¢ and remembering that 02¢ = 025, we
arrive at (5.24).

Next, since ¢|;—o = 0, we get that

65y¢|t:0 = O .

This relation together with (5.22) and (5.24) yield

¢"|t=0 = — (ﬁVZ)VZ Voh) : (5.25)

where Vh and (Vh)T stand for row and column vectors, respectively, and 0, for the
2d x 2d zero matrix. A simple computation shows that ¢”(c) with ¢ € C) is non-
degenerate on N, = T,%©T,C) . Finally, the determinant of the restriction of ¢”|;—o to
N, is

dety(dli—o) = —|Vh|? (5.26)
and the signature of this restriction, which is the difference between the number of positive

and negative eigenvalues, is
sign (9" |4=0) = 0.
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Since the restriction of ¢” (o), o € C), to N, is non-degenerate, a stationary phase

theorem is applicable to the integral (5.15) and it produces (see Appendix)

N-1
I\ o) = 2rat™ k!_lf
,; Ex (5.27)

+ 0(aN+1_d) ,

. k
(Vh|! (%aL) (bpei"/a)] dS»
Cx

where, with ¢”(c)~! standing for the inverse of the restriction of ¢" (o) to N, , o € Cy,
L = (¢"(0)"'V,V), (5.28)

with V, the gradient in ¢ and y, p is a smooth function of x and |{| obeying
p = |Vh| on Ex, (5.29)

dSy is the h-induced surface measure on €, (= |Vh|~!x the natural surface measure
on & A ),

0 = 9(2) - 9l0) — 32— 0,8"(0) (= — ) (530

with z = (t,y) € N, and o € C) . Here we have identified C) with &) .
We will use the expansion above for N = 2 and we compute explicitly its first two

terms. Since

bli=o = 9o (5.31)
and p = |Vh| on &, and
Olc, =0,
we find for the £ =0 term
pbe®®/®| o = 1hp|Vh| . (5.32)

Next we compute the £ =1 term. Since

0 = O0((z—0)%, (5.33)
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for 0 € C) , we have that

L(bpe®’®) = L(bp) on Ch . (5.34)
Since x*)(0) =0 for k=1,2, we find

L(bp) = L(vap) at t=0.

Next, we use that

a = ap+0O(a),

where ag obeys the first of transport equations (5.7)—(5.8) and O(«) stands for a smooth,
compactly supported symbol of order O(«a) (see equation (5.6)). The last two equations
yield

L(bp) = L(vaop) + O(e) (5.35)

at ¢ = 0. Of course, this estimate remains valid after restriction to £y and integration

over it. Next we use the transport equation for ag

1
Orag + 05 - Oga0 + EAQESGO =0 (536)
and the initial condition
aglt=0 — ® - (537)
These two relations imply
1
Oragli=0 = _EAwS‘t:O(P .

This together with S|;_g = x - £ gives
8ta0|t:0 =0. (538)

Now we need the explicit form of L. It is easy to check that

¢II(0)—1 — 0 _Vh’|Vh’|_2
—(VR)T|Vh|=2 ¢-VW|Vh|*Vh® Vh
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where VA ® Vh stands for the matrix (dy,hdy,;h) . Plugging this into (5.28) gives

Vh VW
S VW he vV, V). (5.40)

L = -2
[Vh|*

Using this expression together with (5.37) and (5.38), we find

¢ VW

L(tpao) [,y = VRIT

(Vh®@ Vh)V,V)(ep) . (5.41)

Combining equations (5.34), (5.35) and (5.41), we obtain

L(bpe®/®) = ¢.VWj+0(a) (5.42)

on C) , where
i = |VR[TH(Vh® Vh)V,V)($epp) . (5.43)

Note now that

and the same property holds for |Vh| and h. Hence

/ (&-VWj|[Vh| N, dSx = 0. (5.45)

Ex

Plugging (5.32) and (5.42) into (5.27) and taking into account (5.45), we find (5.17).
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6. Estimates of the Evolution

In this section we estimate the difference U(t) — F(t), between the true evolution
operator U(t) and its approximation F'(t). After that, using estimates on F'(t), derived
in the previous section, we estimate U(t). The estimates on U(t) obtained in this sec-
tion are used in the next section in order to find asymptotic behaviour of the spectral
projections E(\, H,). Our arguments follow closely those of [Chaz 1980]. Recall that
¢ € C§°(B(0,2) x B(0,K)) is the cut-off function entering the construction of F(¢) and

N is the order of approximation used in this construction (see eqn (5.6)).

Lemma 6.1. Let ¢; € C§° and be supported in {¢ = 1} and let supp 1 be disjoint

from supp(Vzp). Then

|f|1ipT”(F(t) —U®))p1llh < Ca¥Fi7d, (6.1)

where ¢1 = ¢1(x, D), provided T is sufficiently small.

Proof. Introduce

r = e /YD, — H) (%) , (6.2)

where S and a obey (5.4)—(5.8). Performing differentiations and using equations (5.4)

and (5.7), we arrive at

1
r = iaN“AwaN. (6.3)
Let
R(t)u = o™* / / et 5=/ vy dzde (6.4)
Since ap is smooth and compactly supported, we have
sup ||[VPR(t)||; < CaNt2-d-n (6.5)
[t|I<T

where T is the time till which the Hamilton-Jacobi and transport equations were solved.

Now observe that, due to (6.2), F'(¢) obeys

(D, — H)F(t) = R(t). (6.6)
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Moreover,

F(0) = ¢(z,Dy) . (6.7)

Consequently, the family G(t) = F(t) — U(t) obeys the equation
(D: — H)G(t) = R(?) (6.8)

and

where ¢ =1 — ¢(z, D,) . Integrating out these equations, we obtain

) = - [ Ut s)R(s)ds - U®)d ,

ol 0
which together with (6.5) for n =0 and the relation ¢ - ¢, = O(aM) for any M , which

follows from (1 — ¢) - @1 =0, gives (6.1).

Theorem 6.2. Let ¢ = 1 on B(0,2) x B(0,K — 1) and let V,¢ be supported in

o) > 2. Let K =2(sup W)? +3 and let v € C3°(B(0,1)) . Then
B(0,2)

| [ o0 F® - U@,

S CaN—?d

(6.10)

with the constant independent of « , provided 6 € C3°([—T,T)) with T sufficiently small.

o0
Proof. In this proof we omit the argument ¢ and replace the symbol [ dt by [.
—00
Let n € C5°(B(0,K — 2)) and =1 on B(0,K —2). By (5.12)

| [oruDal < ca’ (6.11)
where n =1—17, forany A > 0. By lemma 6.1

I [ 0 =002l < Ca¥ e (6.12)
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Now we consider the term [ 0UR(D,) . If §ormal()) = L [0 (t)dt is the standard
inverse Fourier transform of 6(t) (to distinguish from the «-Fourier transform used in

the next section), then

/ U = gromal( T /q) | (6.13)
Since |#rormal()\)| < C(A)~4 for any A > 0, we have that (%)Aénormal(—%) is
bounded for any M > 0. On the other hand, for g()A), smooth, bounded and = 0

for |\| < %, H;Mg(H,) is bounded for any M > 0. The last two relations together

27 a

with (4.5) yield that
||/0Ug Dl < Cad (6.14)

forany A >0. Let g(A) =1 for |A| > 1 and set g(A\) =1— g(A). By theorem 4.3 and

by our choice of K we have

1 (2)n(Da)g(Ha)llL = O(a™)

for any A > 0. This together with (6.14), implies

l9n(Ds) / 6, = O(a™)

for any A > 0. This together with (6.11) and (6.12) yields (6.10).

Replacing in theorem 6.2 H, by H, — A and remembering definition (5.13), we

obtain

Corollary 6.3. Let 1 € C3°(B(0,1)) and ¢(z,£) = ¢1(z)n(€) in (5.8) with 1 =1 on

suppy, n € C° (B(O,K)) and K > 2(sup W+ )\) + 3. Let x be a smooth function
B(0,2)
supported in a sufficiently small neighbourhood of t = 0. Then

|tr (3 / t)eMadt) — I(A, )|

where N is the same as in (5.6) and I(\, «) is defined with the 1, and x as above.
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7. Estimates of the Local Traces

In this section we estimate tr (¢(z)g(Ha)) , where ¢ € C§°(B(0,1)) and g is a smooth
function on \{0} with a compact support. Due to the presence of a cut-off function 1
we call such a trace a local trace. In our approach we express g(H,) in terms of the
evolution U(t) and use the information about the latter derived in the previous section.
Since we have a good control of U(t) for [t| <T and T = O(1) we can estimate smooth
functions of H, supported on the scale O(«) (uncertainty principle). Using this and
a more or less standard Tauberian technique, we estimate non-smooth functions of H,,
with an error term related to the degree of their non-smoothness. The main result of this
section is theorem 7.1.

In what follows we will use the following «-dependent Fourier transform

) = / e F(A)dA

For the standard Fourier transform (a = 1) we reserve the notation

f-normal(t) — /e—it/\f()\)d)\ .

We will use the following Fourier representation for functions of H, :

o(H) = 5 [a-0u, (71)

where §(t) is the a-Fourier of g(A\). FE(A, H,) will stand for the spectral projection of

H, corresponding to the interval (—oo, ). We define also the local counting function
e\, H,) = tr(YE(X Hy)) - (7.2)

In the rest of this section we keep the subindex « at H, in the theorems and omit it in
the proofs.
Consider the following class of functions: g¢(A) is smooth on \{0}, has a compact

support and obeys for some s € [0, 1], for some g > 0 and for all v > 0

brg) = /| o @ldo / 9"(0)ldo < (Mv)® | (7.3)

lo|>v

Let b(g) = sup (v*b(v,g)) . We begin with
v>0
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Theorem 7.1. Let g be as specified above with 0 < s <1 and M >0 (see (7.3)). Let

P e Cf° (B(O, 1)) and let 0 be a regular value of the function h restricted to supp ) x %

tr (vg o / / v(@)g (e, £))dadt (7.4)

+0( <>S+1d>

Proof. Let x be a symmetric function, x(—A) = x(\) whose «-Fourier transform,

Then for o <1

X , is smooth and obeys
%(0)=1 and  suppx C [-T;T] (7.5)

with T < 7. (For the definition of 7 see the paragraph after eqn (5.16).) Function x
will serve as a 0 -approximation supported on the scale O(«). It is of the form x(\) =
éxl(£> , where x; is a function whose standard («-independent) Fourier transform

satisfies (7.5). To probe different energies we use

1 o At/ a
gra [ KOV = x(x~ 1)

= xxdFE .

(7.6)

This equation, Corollary 6.3 and Theorem 5.2 yield
x *de —deyg = O(a*™ %), (7.7)

at a non-critical value of h on suppy x B(0,K). Here K > 2( sup W + )\) + 3 and
B(0,2)

eo(\ 1, Hy) = o~ @ / / u §)<}‘¢(x)da:d§. (7.8)

Integrating (7.7) from — sup W —1 to A and using theorem 4.9, we obtain
B(0,1)

x*xe—ey = 0(a?" %), (7.9)

provided (—oo, A) contains no critical values of h on supp® x B(0, K). Note here that
making an argument slightly longer we could use a special case of simple inequality (6.14)

instead of the more sophisticated theorem 4.4.
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Lemma 7.2. Let x and g be as above and let ¢(\) = —g'(—\). Then
px(xxe—e) = O(a't*79) . (7.10)

Proof. It suffices to prove (7.10) for ¢» > 0. Let 6 be a real smooth positive function
with [0 =1 whose «-Fourier transform 6(t) is supported in (—7,7). As before define

61 by 6(X) =16, (2). (4.41) implies

Oxdye < Ca?. (7.11)
By the definition of 6, there are C' and ¢ > 0 s.t.
Cab(A) > n(A) —n(A—ea), (7.12)

where 7()) is the characteristic function of the interval (—oo,0]. The last two inequalities
together with (7.6) imply

e(n) —e(p—ea) < Cal™¢, (7.13)

Here and in the rest of the proof we use the shorthand e(u) = e(u,,H). Let [v,py]

[p—v|

contain no critical values of h. Decomposing the interval [v,p] into subintervals

of the length ea and applying (7.13) to each of these subintervals, we obtain

le(u) — e(v)]

< cat-d(lm=vl (7.14)
p— a .
Let e, = ¢ xe. Then
px(x*e—e)
(7.15)
= e, — X*€p .
Since x(A) is even we can write x *e, as
(e = [ XV (el X) + e = ) du (7.16)
—0oQ
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Next, using that [ x =1 and that x is even, we find

ecp(ﬂ) —(x * ecp)(,“)

= [ ) 2e0li) = el + A) = el = M)A

Introduce the difference Laplacian

(Anf)() = 2f(p) = fF(u+h) = f(u—nh),
the difference gradient
(Vaf) () = flu+h)— fw)

and the adjoint of the latter

(Vi) = flu—h) = f(u) .

Then
Ap = ViV

= V,Vi.

Using obvious properties of Vj, , we obtain
Ape, = (Vi) * Vye .

By (7.14)
(Vhe| < Cal™¢ (%| +1) .

Next, we estimate

[ Ieto+1) - w(o)ido

— 00

<2 / 9(0)do
|o|<3|h|

+ 2|h| | (o) |do .
lo|>|h|

Using condition (7.3), we obtain

/ " lolo + 1) — p(0)do

— 00

< 2b(|h|,g) .

o7

(7.17)

(7.18)

(7.19)



This together with relations (7.18) and (7.19) yields

h
Bueel <t (Bl 1) oo,

Remembering now (7.17) and using that x(A\) = 1x;(2), where x; is the standard

inverse Fourier transform of y, we conclude that

X1 <§>‘ (g + 1) b(\, g)dX

This inequality together with (7.15) yields (7.11).

e — X * ey

<Co:1_d/ool
< . a

= Ca'~*b(g) .

Now observe that

px(x*xe) = x*(pxe)

and
‘p*e|>\=o = g_*de|>\=0

= tr (yg(H))
where ¢g_(A) = g(—A). Moreover, with ey defined in (7.9),

pxeolyly = g *deof,_,
= —d//w g(h(z,&))dxde .
These relations together with equations (7.3) and (7.10) and lemma 7.2 yield

Lemma 7.3. Assume, in addition to conditions of theorem 7.1, that supp g contains no

critical values of h restricted to supp . Then (7.4) holds.

Remark 7.4. Lemma 7.3 would suffice for d > 1 due to a result of the next section

removing the restriction on the critical points of h in this case.

Results in the spirit of lemma 7.3 but in a smooth case were obtained in [Chaz 1980,

HelffRob 1990, Hux 1988, Ivrii 1986, Rob 1987].
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Now we estimate tr (1/(z)g(Ha)) in a different, more elementary way. The restrictions
on g are stronger now (in particular, step functions (s = 0) are not allowed) and the
result below is weaker than (7.4), however, it has no restrictions concerning critical points

of h. Combining this result with lemma 7.3 we will arrive at theorem 7.1.
Theorem 7.5. Let g be a smooth function obeying |0"g(\)| < Cp(1+A3)~4N\) ™. Let

¢ € (B(0,1)) . Then

tr(Yg(Ha)) =~ f / e ))dud
~dy

Proof. Introduce an auxiliary potential Wy(z) as Wy € C$°(?) and = W(z) in

(7.20)

B(0,2). Let Hoo = —% A — Wo(z). Then by theorem 4.6

14 (9(Ha) — 9(Hoo))l1 < Ca? (7.21)

for any A. By a standard «-pseudo-differential Calculus g¢(Hp ) is an «-pseudo-

differential operator with the symbol of the form
1
9(ho) — 5t - VWog" (ho) + &’rq (7.22)
where hg = $|¢|> — Wy(z) and the symbol 7, obeys

[ [ W@t s < ¢ (7.23)

uniformly in «. Writing out the trace in terms of the symbol of ¢ (z)g(Ho,) and using

the fact above, we obtain

tripg(Hop) = / [ watho)

(7.24)
ot [ [ & IWag' (h)dnd + 0o
Since hg(z, —&) = h(x,&) , we have
/5 - VWog" (ho)dé = 0. (7.25)
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Equations (7.21), (7.24) and (7.25) and the relation hg = h on supp yield (7.20).

Remark 7.6. In the supplement we give a direct and elementary proof of (7.20).
We complete now the proof of theorem 7.1. Let g be the same as in theorem 6.1. We

write it as

g = g1+92

where g1 has the same properties as g with addition that it is supported in a small
neighbourhood of 0 so that supp g; contains no critical values of h restricted to supp 3 x?
except, possibly, A =0, and gy € C§°. Applying lemma 7.3 to ¢g; and theorem 7.5 to

g2, we arrive at the result of theorem 7.1.

Remark 7.7. In order to obtain the next term in expansion (7.4) one would have to
improve lemma 7.2. One way of doing this is by exercising a better control of 7, the
maximal time during which the classical trajectories beginning in B(0,1) x ¢ neither hit
one of the singularities nor return to their starting points. It is easy to trace the explicit

dependence of the r.h.s. of (7.11) on 7. Namely, we have

px(xre—e) = O(a—d<§>l+s> .

Thus if 7 = O(a™*) for some ¢ > 0, one can obtain the second —a?~?-term in the
expansion for tr(yg(Ha)) . An equation extending (7.22) to a higher order in which g(})
is replaced by g(Aa*) shows that it suffices to study the classical trajectories in the
energy interval [—a#,0] with g < . (The latter condition is not sharp: the uncertainty

principle suggests that it should suffice to take p < 1.)
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8. Multiscale Analysis

The core of this section is a multiscale analysis which allows us to relax the condition in
theorem 7.1 concerning critical values of the Hamiltonian h (or the potential W (z) ) and
to extend this theorem to singular potentials. There are three scales in the problem: the
momentum scale 3! determined by the quasiclassical parameter 3 entering the definition
of the kinetic energy, the length scale £(z) determined by the behaviour of the potential
near critical points or near singularities and the energy scale, f(z)?, determined by the
size of potential. The first scale is constant while the other two depend on . Scaling
the coordinate and energy appropriately, we reduce the original problem to a model one,

treated in the previous section, but with the effective quasiclassical parameter

b
Uz)f(z)

e () =

which depends on all the scales. Applying to the latter problem theorem 6.1 and rescaling
the result back we obtain the desired quasiclassical expansion for the original problem.
One of the consequences of this is a quasiclassical expansion for a singular potential out-
side a small neighbourhood of singularities. Decoupling of the latter neighbourhood and
estimation within it is done in the next two sections, respectively.

We consider the Schrodinger operator

Kg = —%BzA—qﬁ(x) on <.

Its symbol is denoted by
1
Ko, €) = 5P - g()

We assume that ¢(z) is real and obeys the Kato inequality:
C
lfull < ellAull + 5 lu] (8.1)

for all uw € D(A) and for all € > 0 and with C independent of ¢ and u.
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We impose, in addition, the following conditions on the potentials ¢(x): there are

differentiable functions £(z) and f(z) obeying

() >0 ae and |VL(z)|<L (8.2)
for some L > 0 and
f(z)>0 ae andc ! < % <c on B(y,{(y)) (8.3)

for 1 <c< oo,ie. f isslowly varying on the scale of £, and s.t.
0¥ ¢(x)| < Cyf(x)*b(a) . (8.4)

In the rest of this section f f stands for the (z,¢)-integral over the phase-space

d

(remember the normalization d§ = (27)~%x Lebesgue measure).

Theorem 8.1. Assume conditions (8.1)—(8.4) are obeyed and let ¢ be smooth and obey
0¥y(z)] < Cul(x)~¥! for any v. Let g be smooth on \{0} and satisfy (7.3) and
lg(A)| < C(=A)3. for some s € [0,1]. Then

8.5)
:6 p—s—d —9s—d (
< 2s 1 s
< Cp /Qw max [(7f(x)£(x)) , ]Z(:c) dzr ,
where Qy = |J B(y,{(y)) and where with C independent of 3. Here p = 1 if
yEsupp ¢

either d > 2 or d =1 and ¢ obeys

|6(x)| + £(z)|V(z)| > ef(z)? (8.6)

on {z | {(z)f(z) > B} and with some ¢ > 0 independent of § and p = 3 otherwise.

Proof. First we demonstrate this statement under the additional restrictions that 1

is supported in {z | L(z)f(z) > B} and that (8.6) holds on 2, = {z ‘ L(z)f(x) > 68} for
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some sufficiently small § > 0 (e.g. § = c (1 — L) after choosing L < 1). Then we use
the obtained result to remove this restriction.
Note first that by rescaling #(z) we can assume L < 3 in (8.2). In this case (8.2)

implies
)T S )T S )T o By dw) (5.7)

Next, using (8.3), we derive from (8.4) and (8.6)

07¢(z)| < C.f(y)%(y)~ (8.8)

and
6(@)| + £(y)|Vo(x)| > e1f(y)? (8.9)

for some e; > 0 independent of y and B, for all z in B(y,é(y)) N Q1. Next, we need

the following

Lemma 8.2. Assume that for some constants f,£ > 0, s.t. f£ > (3, ¢(x) obeys on
B(y,2{) the estimates

07p(z)| < CyfPe 1 (8.10)
and

p(x)| + £ V(z)| > ef? (8.11)

for some € > 0. Let 1 € C§°(B(y,¢)) with |07y < C,4~1. Then

|tr (wg Kﬁ //@bg(k (8.12)

< C,BS+1 dgd s— lfs+d 1
where C depends only on the C,, ’s above.
Proof. The idea of the proof is to scale the given problem to one in the unit ball and

with a potential whose bounds are independent of f and ¢. To this end we define the

unitary transformation
U@) : (z) — Loy +La),
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scaling x into fz, and use it to map Kz into
UOKU(D)™ = £728°D% - g(y+ L)

Introduce the new potential

the new quasiclassical parameter

a = — (8.13)

and the new Schrodinger operator

H, = —%aZA—W(:E).

Note that the new Schrodinger operator is related to the original one as

ULKgU()™" = f*H, with a:ﬁ (8.14)

fe

Moreover, differentiating the new potential
W () = f2N(07¢) (L)
and using estimate (8.10), we find
0"W(z)| < C, on B(0,2)
with C.,, independent of f and £. Moreover, we derive from (8.11) that
(W ()| + [VW ()] > ¢ (8.15)

on B(0,2) for some ¢ > 0. Of course, W obeys the Kato inequality (with a constant
depending on f and /).
Next, due to (8.14)
§(f*Ha) = U(Dg(Kp)U(@)" . (8.16)
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Using that U(£)yU(¢)~! is the multiplication operator by ¢(z) = ¢(fz) and using the

invariance of the trace under similarity transformations, we obtain

tr (g(Kp)) = tr(pg(f*Ha)) (8.17)

with a = g3/f¢.
Observe now that ¢ € C§°(B(0,1)), |07¢| < C, independently of £ and 0 is not a
critical value of h = 2[£|2— W (z) on supp ¢ x @. Since g(f2)) obeys (7.3), theorem 7.1

with g()\) replaced by g(f2)) is applicable to H, and it yields

tr (pg(f*Ha)) //wg (f?h)

S Cf28a3+1 d’

(8.18)

where we have used that b(gs) = f**b(g9) with gf(A) = g(f?)\). Remembering that in
the first case (8.16) and the relation [ [ ¢(z)g(f?h) =0 yield an even stronger estimate
we conclude that (8.18) holds in both cases.

Substituting (8.18) into (8.17) and using that a=2 [ [pg(f2h) = 372 [ [g(k)

arrive at (8.11).

Now we return to the proof of theorem 8.1 and recall that we have shown that ¢
obeys (8.8) and (8.9) on B(y,#(y)) . Hence lemma 8.2 is applicable on this ball and with
f=f(y) and £=£(y), provided £(y)f(y) > [, which gives

tr (9 (K5)) / / Voo (k (8.19)
< C,Bs+1 df( )d 1€ )d 3—17

where 1, € Cg° <B (y,l(y))) and is s.t. (8.6) holds on supp, x ¢. Using now (8.3) and

(8.7) in order to estimate the r.h.s. of (8.19), we obtain

|t (¢yg(Kp)) / / Pyg(k

C s+1—d d+8—1£ —s—ld )
< cprt | RTIC O

(8.20)
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Finally, we cover suppt with balls B(y,£(y)), y € suppt . Since £(z) is slowly varying
these balls can be chosen so as to have finite intersection property, i.e. there is a constant
M, s.t. the intersection of more than M, balls is empty. Moreover, there is a partition
of unity {j,} associated with this covering s.t. j, is supported in B(y, Z(y)) y gy =1
on suppvy and 0%j, = O(E(y)"O") (see [Horm I. theorem 1.4.10]). Using this partition

of unity, we decompose

= quy

with 1, supported in B(y,£(y)) and obeying 0"¢, = O(Z(y)""') . Using now (8.21)
for each of the 1), ’s, we obtain (8.6) with p = 1. Note that additional restriction (8.6)
is equivalent to the condition that 0 is not a critical value of the rescaled Hamiltonian A
on B(0,2) x ¢

Thus we have proven theorem 8.1 with » =1 and with the additional restriction (8.6)
on €2;. Now we use this result in order to strengthen the key theorem 7.1 used in the
proof of this result. Namely, for d > 2 we remove from the latter theorem the condition
that 0 is not a critical value of h restricted to B(0,1) x ¢, which in turn will allow us to
remove this condition from the proof of (8.5) given above!

In the one-dimensional case by the order of a critical point xy of ¢ we understand

the order of the first non-vanishing derivative of ¢ at xy minus 1.

Theorem 8.3. Let W obey the conditions given in the beginning of section 4. Let

¢ € C§°(B(0,1)) and let g be the same as in theorem 8.1. Then

tr (vg(Ha / / volh (8.21)

(s—l—ld ))’

where ¢(a) = 1 if either d > 2 or d =1 and W has no critical points in B(0,1) N
W—(suppg), ¢(a) = [Ina| if d =1 and n =1 and ¢(a) = a2 if d = 1 and

oo >n > 2. Here n is the maximal order of critical points of W on B(0,1) N W=1(0).
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Proof. We define the length scale as

a) = M7V so
= o (W] VW) 2
- ,

where M, is given by
M; = 1+ 2sup ||Hessian W (x)||
x

> 2sup |V(|VAl|,_,)l
Since 4(x) < const on B(0,2), we have that
W ()| < C 021,
This forces us to set the energy scale to be
flz) = £z) .

The definition of #(x) and f(z) implies that W (x) obeys (8.2)—(8.4) and (8.6) with those
f(z) and £(z). We have shown above that under these restrictions (8.5) with r =1 is

true, which in the present case yields

tr(pg(Ha)) o [ [wg(h)

(8.23)
< Cas—i—l—d/ f(l‘)d_2d.’1,‘
2y
for any ¢ € C§° supported in
{f(@)l(z) > 20}
= {{(z) > V2a}.
Now we consider
{f(@)l(z) < 20}
(8.24)

= {l(z) < V2a}.
On this domain we pick the length and energy scales to be /a and «, respectively.
Consider H, on the ball B(y,/a). Scaling

r — y++vax
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maps H, into oH , where

with
W) = ~Wly+ Vo)

obeying (8.16) on B(0,1). Then theorem 7.1 with @ = 1 and with g(\) replaced by

tr (Yg(aH)) —//w = 0(a),

where h = |¢|? —W(m) , provided 1 € C§°(B(0,1)) . (This is a trivial estimate if g(a)) =

g(aA) implies

a®g(\) for a > 0.) Rescaling this back to the original variables and using that, as above,

tr (@bg(aﬁI)) = tr(pg(Ha))

//d)g(aﬁ) = a_d//wg(h)

where ¢(z) = (w\;—f) , we obtain

=t / J o o2

and

Now let
61(z) = max ({(z), V) .

Then (8.25) can be rewritten as

tr (¢g(H //wg h)|

< C’ozl"'s_d/ Zl(x)d_2da:,
B(y,3¢1(y))

provided ¢ is supported in B(y,¢1(y)) and B(y,3/:(y)) lies in (8.24). On the other

(8.26)

hand equation (8.23) and the observation that Q, C B(y,3¢1(y)) for ¢ € C§°(B(y, 3¢(y))
imply (8.26) for any ball B(y,3£1(y)) lying in

{zlt(z) > Va}.
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Thus (8.26) holds for any ball B(y,3¢1(y)) (provided ¢ is supported in B(y,#¢:1(y)) and
obeys the corresponding estimates). Using, as above, a partition of unity associated with

the length scale ¢;(z), we derive

ltr (¢g(Ha)) —a_d//¢9(h)|

(8.27)
< Cas+1_d/ Kl(a:)d_Zda:
B(0,3)

for any ¢ € C3°(B(0,1)) and with C independent of a and of [Vh|™*. For d > 2,
the integrand on the r.h.s. is bounded. For d =1 it is O((|z — zo| + /@)™ '), if the
order of the critical point zo is equal to 1 and is O(a_%) otherwise. Hence the r.h.s.
of (8.27) can be bounded by const a®*T1 "p(a) and this inequality can be extended to
= B(0,1). This yields (8.21).

Now redoing the above proof of (8.5) but using theorem 8.3 instead of theorem 7.1 we
conclude that (8.5) holds under the conditions of theorem 8.1 without additional restriction
(8.6) in the d > 2 case, provided ¢ is supported in {z | f(z)¢{(z) > B} .

Now we analyze the region {z | f(z)é(z) < $4}.

Theorem 8.4. Assume ¢ obeys (8.1)-(8.4). Let CA% < g(A) <0 for 0 <s<1. Let

¥ be a smooth and bounded function supported in {z | f(z){(z) < 8} . Then

te(g(Ks))| < CB* / ()~ | (8.28)

2y

Proof. Denote gs(A) . Without the restriction on generality we can assume

= )%
¥ >0 and |V{(z)| < 1. 9 >0 implies that

Ctr(ygs(Kp)) < tr(yg(Kp)) < 0.

Let y obey f(y)f(y) <. Let ¢ € C§°(B(y,£)), where £ = {(y), and satisfy |0”p(z)| <
C,¢~ 1"l . Rescaling the problem as z — y + £z , we obtain

tr(x)g.(Kp)

= B0 % tr 1 (z)gs(H) ,

(8.29)
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where ¢1(z) = p(y +¢z) and H = —3A — ¢1(z) with
¢1(z) = B 22¢(y + Lx) . (8.30)

Note that @1 € C§°(B(0,1)) and obey |8%¢1| < C, . Moreover, estimates (8.4) on ¢(z)

and inequality 3=1f¢ <1 imply that ¢,(x) obeys
0¥p1(z)] < C
on B(0,2). for a fixed § > 0. Hence, e.g. by theorem 4.10,
tro1(z)gs(H)| < C,

This together with (8.29) and (8.30) yields
trp(2)g(Kg)| < Cp207*

< 01,823/ {(z)" %
B(y.)

Covering supp® by balls B(y,£(y)) with y € supp® and proceeding as in the proof of
theorem 8.1, we arrive at (8.29).

In the classically forbidden region estimate (8.5) can be considerably improved.

Theorem 8.5. Assume ¢(z) obeys (8.1)—(8.4). Let ¢ be a bounded function and let

g(A) satisfy |g(A)| < C(=A)%(A)™ for some m and s> 0 and let sup(f~2¢) < 0. Then
2y

p

o (M)Af () (f (@)™ (@)~ "dz (8.31)

tr (x)g(Kp)| < C

for any A > 0. Here, recall, 2, is defined in theorem 8.1.

Proof. Let z € supp ¢, £ = 4(z) and f = f(z) and let ¢ € C§° (B(y, %E)) and
obey |0”¢(x)| < C,£~I"! rescaling & — z + £z and energy — f~2 x energy maps Kz
into f2H, , where

2
(0%
Ha = —7A$—¢0($) 3
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with a = % and ¢o(z) = f2¢(z+4£x) . Observe that |0”¢g(z)| < C, on B(0,2). Since

the trace is invariant under similarity transformations, we have

tr (2)g(Kg) = tr po(2)g(f*Ha) , (8-32)
where g € C§°(B(0,3)) and obey |8”po(z)| < C, .
By the restriction on g(A) we have that |g(f2A)] < Cf25(f)*™(—X)%(\)™. Hence

there is a function g(\) supported in (—oo, sup ¢p) and obeying [0"g(A)| < Cr{N)™™"
B(0,1)
and g(A) > f725(f)72™|g(f2)\)|. Hence by a property of trace norms (see [Reed Sim II,

p. 42])
[tr o(2)g(f*Ha)|
(8.33)
< PP [tr po(2)g(Ha)| -
Applying theorem 4.8 (see Remark 4.9b) to tr ¢o(z)g(H,) , we obtain
tr oo(2)§(Hy) = O(a?) (8.34)

for any A > 0. Remembering (8.32) and (8.33) and remembering that o = % , we find

e p@a(n)| < C(5;) (3.35)

Now, like in the end of the proof of theorem 8.1, covering supp % by the balls B(z, K(z))
with z € supp %, associating with this covering a partition of unity, splitting tr ¥ g(Kp)
with the help of this partition of unity and applying (8.32) to each of the resulting sum,

we obtain (8.28).

Remark 8.6. Theorem 8.5 can be derived from a natural generalization of theorem 8.1 to
arbitrary s > 0. This generalization expresses tr ¢¥g(Kg) as a sum of [s] +1 Weyl-type
local terms, as given by a standard quasiclassical pseudo-differential calculus, plus the
error of order O(a'**~%) | where a = % . In the classically forbidden region the local,

Weyl-type terms vanish, so the result follows.

We combine now theorems 8.1 and 8.5.
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Theorem 8.7. Assume the conditions of theorem 8.1 are obeyed and let 1),€,; and let

p be the same as in theorem 8.1. Then for any A > 0 and any p <0

rig(Ka— )~ 57 [ [ gt )

/3 p—s—d —9s—d
< Cp* / = 72574y
Qd)ﬂQ%ﬁ <f£) (8-36)

— A
+Cp® min (ﬁ / VK a 1) 254y

QyNQ5

where C depends only on d and on the constants in (8.3) and (8.4) and where Qg = {z |
f(x)l(z) > B} and Q5 = N\Qg .

Proof. Let fi(z) be a positive function satisfying eqn (8.3) and obeying fi(z) >

f(x). Define the domains
R, = {a: ‘ o(x) > —% — 3Coc3f1(x)2}

and

Ry = {x ‘ d(x) < —%,u— 2Coc3f1(a:)2} ,

where Cj is the constant entering (8.4) for ¥ = 0 and c¢ is the same as in (8.3). We begin

with

Lemma 8.8. With the conditions and notation of theorem 8.1 we have for any A and

for any <0

br pg(Ks — 1) — ﬂ—d//wg(k )|

<08 [, () e (837

Proof. On R; the potential ¢(z)+ p obeys (8.1)—(8.4) but with f(z) replaced by
fi(z) . Hence theorem 8.1, with f;(z) instead of f(x), is applicable to Kg—p and yields
that the Lh.s. of (8.37) is bounded by

cp* /Qw max [(%)pﬂ_d, 1}£(x)_2s_dda:
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for any 1 supported in R; .

On Ry the potential ¢(x) + p obeys (8.1)—(8.4) but with f(z) replaced by
max (f1(z),\/—p). Let Rz = {x | ¢(z) < —ip — Cocfi(z)?}. Using that ¢(z) <
d(y) + |¢(z) — #(y)| and that |p(z) — ¢(y)| < Cocf(z)? on B(y,£(y)), we derive that
Qy C Rs3, provided that suppv C Ry . Furthermore, since

— . 1
sup { [max (f1(2), v=1)] " (¢(w) + 1)} < —min (5, eCo) .
we have that

suppyg C (— co, —sup { [ max (Fr(@)vV=m)] " (¢(@) + ) }) -

3
Hence theorem 8.4 with f(x) replaced by max ( fi(x),/— ,u) is applicable to Kg—p and

yields that for any 4 < 0 and for any A

B NA o
o, (i) o

provided 1 is supported in R and is bounded. Since, moreover, f f Yg(k —p) =0 for

trpg(Kp — n)| < CB*

such 1 ’s, we conclude that the Lh.s. of (8.37) is bounded by

for any A, provided 1 is bounded and is supported in Ry . This together with the

conclusion of the previous paragraph yields (8.37).

Now we return to the proof of theorem 8.7. We pick up fi(x) as

_ V=p -1
filz) = [f(z)+ \/WJFM( )7t (8.38)
Then for all =
fi(@)l(z) = 8. (8.39)

Moreover,

RinQ5 c {o| ) <

e
=
——
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and

R2HQ% C {x‘g(l')ZCZ\/I?—u}a

where C7 = 64/Co(1+6¢3) +2 and Cy = \/Cp(1 +4c?) + 2. Using this we derive

f(@)é(x)
g g

on Ry ﬂQ% and
I} B
S C
h@i@ =~

on Ry NQj, where C3 and Cy depend only on Cp and c. These inequalities together

with lemma 8.4 imply (8.36), provided that v is supported in Q5 . Since the case of ¢

supported in Q14 is covered by theorem 8.1, eqn (8.36) is proven.

Now we apply theorems 8.1 and 8.4 to the operator Kg defined in (2.51). Recall that
the potential ¢(z) = ¢x(z,y) for this operator obeys (8.4) (see (2.9)) with f(z) and £(z)
given in (2.7)—(2.8). The latter equations yield that these f(x) and ¢(x) obey (8.2)—(8.3).

Theorem 8.9. Let Kz be the operator defined in (2.51). Let g, ¢ and p be the same
as in theorem 8.1 and let, besides, 1) be supported in {z ‘ L(z) > r} with r > 0. Then

for any p <0

tr (g (K s — ) — A / / gk — )

(8.40)
< Cp*+P~4 max(r¥, g)~Gste—d+ 4 055‘ ln< b )‘ ,

where the constant is independent of 3, of the X; ’s and of the y; s and ds =1 if s =0
and =0 if s#0.

Proof. We derive theorem 8.9 from theorem 8.7. Remembering that the potential of
Kpg obeys (8.4) with f(x) = £(z)"2(0(z))"2 , we find that

{2 f@)t(a) > %ﬂ} C {z| B2 <t(x) <2671} . (8.41)
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This and the fact that £(z) = min|x — y;| yields that the first integral on the r.h.s. of
j
(8.36) is bounded by the first term on the r.h.s. of (8.40).

To estimate the second integral on the r.h.s. of (8.36) we observe that
(o] f@)t@) <P} C {o|be) <47} U {z|b@) > 57} (842)

The part of this integral over {z ‘ {(x) > 71} is bounded, clearly, by the second term on
the r.h.s. of (8.40). The part over {z ‘ {(x) < 4%} is, due to lemma 8.10 below, bounded
by the first term on the r.h.s. of (8.40). Thus the second integral is bounded by the r.h.s.

of (8.40). This together with the result of the previous paragraph implies (8.40).

Lemma 8.10. Let g(\) obey |g(A)| < —CA% . Let ¢ be smooth, supported in £(z) < r
and obey |0"y(z)| < C,r~¥|. Then

2)\ 3([d/2]+1)
7max(r,ﬁ )) max(r, ﬁ2)_s , (8.43)

@Kl < ¢( 4
provided either 7 < 32 and 0<s or 3?2 <r< %Izrl#lg”yz —y;| and s=0.

Proof. Due to the definition of £(z) and the restriction r < 3a

P() = Y i), (8.44)

where the functions 1; are smooth, supported in |z — y;| < r and obey [0"v¢;(z)| <
C,r— Il

Next, rescaling = — y; + roz maps Kg into %Kowg , where

/82
Kop = —gA — ¢o(x) , (8.45)

with ¢o(z) = r(¢(y; + rz) + p) . Note that the r.h.s.’s of eqns (2.10) and (2.11) yields
that ¢(z) < (B\jlz — yj|_%)% < (BAjlz — yj|_2)% . This together with the uncertainty
principle —A > (4]|z|?)~! implies that ¢, obeys the Kato-type inequality

C
Igoull < ell Aull + —lull (8.46)
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forany € >0, u € D(A) and with C independent of ¢, 8, M, y, A and u. By the

unitary invariance of the trace norm

[4i(2)gs(Kp)lla

=7"°||¢o()gs(Kop)ll1 ,

(8.47)

where g5(A) = A% and 9o(x) = 9;(y; + rx). Note that 1) is smooth, supported in

|z| <1 and obeys [0¢(x)| < C, . We claim now that

7\ 3([d/2]+1)
|Yo(2)gs(Kop)|l1 < C(—) .

P (8.48)

For r = 3% (8.48) is, due to (8.46), a standard estimate (see e.g. [RSII]). For s =0 and
for general r > (32 this follows from lemma 4.2.
Equations (8.47) and (8.48), the condition |g()\)| < —Cgs(A) and the property of the

trace norm yields that

r\3(d/21+1)

i (2)g(Kg)lly < C(@) o

This together with (8.44) yields (8.43).
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9. Decoupling of Singularities

In the previous section we have proven rather accurate quasiclassical estimates outside
of the singularities of the potential. In this section we show that inside a small neighbour-
hood of a singularity the spectral asymptotics of tr[¢g(Kg)] can be computed by retaining
in the potential ¢(z) only the leading term near this singularity. In the next section we
obtain asymptotics for the approximating Schrodinger operator near singularities.

Recall that we are considering the Schrodinger operator

1
Ky = —58°A— () (9.1)
on . In this section we assume that ¢(x) is smooth outside the points yq,...,yy and
obeys
0¥ ¢(x)| < Cub(x)™ "N e(x)) ™2, (9.2)

where {(z) = min|z — y;|. We assume, besides, that ¢(x) can be written as
j

M

p(x) = > Vi(z)+ ¢™8(x) (9-3)

=1
where V; and ¢ are real functions, smooth outside y; and {y;}, respectively, and
obeying
0"Vi(w)| < Clo—y;| 717! (9.4)

and
09" (x)| < Cl(x)" I (e(a) ™" (9.5)
Consequently, near the singularities y; we consider the Hamiltonians

1
Kig = —§ﬂ2A—V;(;c).

The symbols of these operators are denoted by
Lo 2
Bi(,6) = 5I¢2 = Vi(a) -
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We assume in this section that d > 2. Let

and recall that a = min{|y; —y;|, ¢ # 7,1} . In what follows O(---) stands for an estimate

uniform in y and A. The main result of this section is

Theorem 9.1. Let Kz be defined in (9.1) with ¢ obeying (9.2)—(9.5), where M is
bounded independently of (. Let ,83 el r< a for some € > 0. Let ¢ € C5° be
supported in {z|{(x) < r} and obey 0”9 = O(r~—*1). Then

tr[yg(Kp) — $g(Kip)]

=50 [ [ (o)~ gk) (9.6)

+0 ,82 dT'2 +a 1/31 d,,,2(d 1))

with the remainder estimate uniform in the y; ’s and in the A;’s.

Proof. We conduct the proof in two steps.

(a) On the first step we replace ¢(z) by a potential ¢(z) s.t

~ [ Vi(x) for |z —y;| <4rVi
o) = { ¢(z) for min |z — y;| > 67 (9.7)
and is obeying
0" $(z)| < Clla) " M(l(w)) ™ (9.8)
and ~
107 (6(z) = ¢(2))]
(9.9)
< Ca~ Y (z)~ IVl
with the constant C independent of a and r. ¢(z) can be constructed as
ZV (2)x(z — y;) + P(z 1—ZX5U—?J1 , (9.10)

—U

where x(z) is supported in |z| < 57 is =1 in |z| < 4r and obeys [0”x(x)| < Cyr
Denote

Ry = —36"A — (a) (9.11)
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and

~ 1., =~

B 6) = Sl — d(a)
The main result at this step is the following

Lemma 9.2. Let 8?2 <r < %a and let 1 be as in theorem 9.1. Then

tr[yyg(Kp) — pg(Kp)]

=p73 //¢ ) (9.12)

+0 ,82 dT'2 +a_1,81 d (d—l)) ]

Proof. Denote K = K and K = IN{g. Denote the Lh.s. of (9.13) by A and write

A =B+C, (9.13)
where
B = —tripg(K)+ trepg(K) (9.14)
with ¥ =1 —1, and
C = tr(g(K) - g(K)) . (9.15)

Applying theorem 8.9 with p =1 and s = 1 to each term on the r.h.s. of (9.14), we

B — _ﬁ—d//ﬂ;(g(k) —Q(E)) (9.16)
+O(Fri?)

In order to estimate C' we introduce the interpolating potential

obtain

¢y = $+t(¢—$) .
Then C can be written as
1
0
C = /0 tr 9Kt (9.17)
where
1
Kt = —5,62A—¢t(.’11) .
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To calculate the r.h.s. we note that

g(Ky) = / g(NB(K, — N)dA (9.18)

and

1
S(Ky— ) = 5 Im(K; — A—i0)"! .

Using the second resolvent equation, we find

By the cyclic property of the trace

tr[(Ky — 2) 7 (¢ — @) (K — 2) 7]
= tr((¢ — §)(K: —2)77] .
The last three relations yield

0
tr a 5(Kt - A)
6 ~

= = 5y (6 = 9)3(K; = M) -

Integrating this equation against g(A) and then integrating the r.h.s. by parts and using
(9.18) for the Lh.s., we find

0 ~
tr o 9(Ky) = —tr[(¢— ¢)g'(Ke)] - (9.19)
Here ¢'(A\) = a%():\) , the indicator function of (—o0,0]. This together with eqn (9.14)
yields
1
¢ = - [ ul@- 9y Ko (9:20)
0
Pick now 7y obeying
B =19 < 7. (9.21)
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Using that ¢ — ¢ is supported in B(0,67) and obeys estimate (9.8), applying (8.5) with
f@)=£z)"7,s=0and p=1 (d>2)in Q= {z|ro < £(z) < 6r} and rough estimate
(8.43) in {z|l(z) < 2ro} to the r.h.s. of (9.20), we obtain

|C' — Weyl| < const!,

Weyl = - ///¢ D (ke)d
= 57 [ [lo®) - o(F)

where

and

Since 79 < r and d > 1, the first integral is bounded by const r3(d=1) | The second

d
integral is bounded by constr? = const 3%. Hence for r > 32

©=r / / lo(k (9.22)

+O 1,61 d,',,2(d 1))
Combining (9.13), (9.16) and (9.22), we arrive at (9.12).

(b) Now we pass from K g to K;g. The main result at this step is

Lemma 9.3. Let ¢()\) be a smooth function on obeying |0"p(N\)| < Cp,(A\)**™ for
some m. Let ¢ € C§°(B(yi,r)) and obey [0"9(z)| < Cpr~IYI. Let r > 2. Then for
any A > [ } + 2

() (P (Kp) — o(Kip)) Il

B \A/B\—3d—12 (9.23)
< _ =
<t (L) (4
where ||¢||a = sup((\yA1™02T™p(N)|) and C is independent of 3 and r.
A
Proof. Rescale the problem as x — y; + rz. Then
f(i,g — ng and Ki,g — Hg,ﬂ, (924)
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where

Hs = —%(é)zA—(g(yi+m), (9.25)
and
Hoyp = —%(g)A—W(yi+r:v). (9.26)

Observe that ¢(y;+rz) = Vi(y;+rz) on B(0,2) and that sup  @(y;+rz) <Crt.
B(0,2)\B(0,1)
Furthermore, we have

1%(x) (p(Kp) — ¢(Kip))ll1
< Cllthr(x) (p(Hp) — ¢(Ho p)) I1

where o1(z) = w(——y) € C2(B(0,1)). w1(z) obeys [0"¥1(z)] < C,. Applying

theorem 4.6 with o = g ,and L =r"2 , to the r.h.s., we arrive at (9.23).

(9.27)

Lemma 9.4. Let g(p) = p_ and let ¢ € C(B(yi,r)) and satisfy [0"y(z)| <

Cl(x) Y. Let ta>r> ﬂ%_e for some € > 0. Then
3

g (Kg) — vg(K;p)¥

. (9.28)
< optirTE

Proof. As is the proof of lemma 9.2 we set K = I?g and Ko = K, . Pick fi; and
f2, obeying
Hilw) + fo(p) = 9(p)
supp f1 C [-3,0],
and
supp f C (—00,—2),

besides fs is taken to be smooth. We have

tr(Yg(K)y — vg(Ko)y) = ZAZ- : (9.29)

where
A = tr(Yfi(K)y — ¢ fi(Ko)y) -
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Consider A;. Decompose v in a smooth way as

Y o= Y1+,

where 1, is supported in B(y;,2ro) and s, in B(y;,7)\B(yi,r0) with rq = 3%. Ap-
plying rough estimate (8.43) in which 1, ¢g and r are replaced by %;, fi and rg,

respectively, we obtain

0 < troprfr(K)yn
. )3<[d/21+1)

0
< (G
and similarly for K. Hence

tr o1 f1(K)p1 — treps fr(Ko)yr
1o\ 3(d/21+1) (9.30)
< ¢(z) |
Next, we apply to tr[2f1(K)] and tr[¢2f1(Ko)] eqn (8.5) with s =0, with d > 2
and therefore p =1, with Q = {ro < |z — y;| < r} and with £(z) = min |z — y;| and

f(z) = £(z)~2 . Taking into account that

Yo (f1(k) — fi(ko)) = 0,

where k = k® and ko, = k; , we obtain
[t (93 f1(K) — 93 f1(Ko))|
" oaadt
< C’Bl_d/ t%? (9.31)
To
<cp-irT .

Combining (9.30) and (9.31) and remembering that ro = 82 and r > 3%, we find
A < CBY T (9.32)
Next, applying lemma 9.3 to the r.h.s. of

|As| < |[¢fo(K)Y — 9 fo(Ko)oll1

83



we obtain that for any B > 0

|As| < CpB .

This together with (9.29) and (9.32) yields (9.28).

Lemmas 9.2 and 9.4 imply theorem 9.1.
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10. Coulomb Problem

In this section we compute some spectral characteristics of the Coulomb problem. We

use the following notation

1 A
K = —FA -+
2B 2ﬂ ‘$|+
with A >0 on L2(3) and
1 A
kx = —|¢? - = : 10.1

Let 9 be a smooth function on [0,00) with the properties

1 fort<1
w(t) = 0 fort>2"

¥, will stand either for ¢ (|z|/r) or for (¢/r) or for the multiplication operators related

to the latter functions. Let

_ _ Jp tp<0
g(w) = p- = {0 if 1> 0.
The main result of this section is

Theorem 10.1. Let 3?2 <r <1 and let ¢ € C§° (B(0,2r)) and obey |0¥¢| < C,rI¥I.

Then, with the remainder uniform in X,

tr (bo(Kn) =0 [ [gi)

) (10.2)
+ BN OB rEAY)
with O(8~'r=2) uniformin 3, v and X.
Proof. To begin with we rewrite Ky g as
K)\ﬁ = )\K,y with vy = ﬁ (103)
’ VA
and with
K, = —1 2A—i+1 (10.4)
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Let 1 =1 —1 . Applying theorem 8.1 with £(z) = |z| and f(z) = |z|~2 , we obtain

u(@g(k,) = 2 [ [Ba)+ 061, (10.5)
where k= 1[¢]2— le +1, provided r > 3?. Next we compute trg(K,). The eigenvalues
of K, are

1
B, = 41 10.6
2a2n? + (10.6)
with the multiplicities n?. Hence
2
trg(K Z ( 2a2n2 )n , (10.7)

where m = [\/—%J . Computing the sum on the r.h.s., we find

trg(K,) = %m(m—l—l)(m—k %) _ %a_2m. (10.8)

Representing m as m = \/-%7 —t for some t € [0,1], we see that the r.h.s. can be

simplified as
1 1

trg(K,) = ———— 4+ —+0(1). 10.9
g( ’y) 3\/§ 3 42 ( ) ( )

On the other hand we can compute explicitly
// (k) = ! (10.10)

Combining the last two relations yields

o) =0 // (10.11)

+ 47—2 +0(y™ Y.

Equations (10.5) and (10.11) and the observation that tr[yg(Ky g)] = Atrepg(K,) with

v = % yields (10.2).
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11. Estimates of Schwartz Kernels

In this section we study the restriction e(z,z, A, H,) of the Schwartz kernel of the

operator FE(A, H,) to the diagonal. Recall

60(-7;1 AaHa) = a_d/ dé.,
h(z,£)<A

the Weyl expression for e(x,z,\, H,). We begin with the following result (cf. Hoérm
1968).

Theorem 11.1. Let H, be defined as in the beginning of section 4. Let o < 1. For

xz € B(0,1)
|6(.T, T, A, Ha) - 60(55’ A, Ha)'
Y as (11.1)
< Ca'" YW (z)+ N +a3) =
where C' is independent of « . In particular, for d > 3
le(z,z, A\, Hy) — eo(z, A, Hy)| < Cal™ (11.2)
and for d = 1,2 the r.h.s. is at most O(a™%).
Proof. First we assume that = belongs to a closed subset of
{z € B(0,1)|W(z) # —\} (11.3)

and prove (11.2) with this additional restriction. Then using this result and the multiscale
analysis of section 8, we remove this condition.

If W(z)< -\, then eg(z,\, Hy) =0 and
e(z,z,\, Hy) = O(a™M)

for any M by an estimate similar to (4.28), reflecting the fact that x is in the classically

forbidden region. Thus it suffices to consider the case W(x) > —\.
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As before, let x be a smooth function whose «-Fourier transform % is smooth and

supported in a sufficiently small neighbourhood of ¢t =0 and let x; be defined by

x(A) = éXl (2) :

First we study x *dFE and then, using the Tauberian technique, extract from this study
the information about FE'.

To estimate x x dE we write it as

1 .
X*dE(\ Ho) = o— X&) U (t)dt .

Using the decomposition

Ut) = F(t)+G(t) ,

where F' is the Fourier integral operator introduced in section 4 and G is defined by this

equation, we split (11.2) as

1 1
EF = —F. —
X *d ! + aGX ,
where
F,(\) = / e/ AR (L) F(t)dt (11.4)
and
G0\ = / MO Gt (11.5)

Denote the restriction of the kernel of F,()) to the diagonal by f(A, x).

Lemma 11.2. Under the conditions of theorem 11.1 and the restriction W (x) > —\ on

B(0,1) we have
f(@, ) = eo(w, A Hy) + O’ ™) (11.6)

with the uniformly bounded error term.

Proof. Substituting into (11.4) expression (4.3) for F(t), taking the kernel of the

resulting operator and restricting it to the diagonal, we derive

f(z,\) = a7 / / e/ pdedt (11.7)
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where b = Ya and

o = S—z-E+A.
Due to lemma A.2 of the Appendix
Orp = A—h—&-VIWt+ O(t*(£))
O = —Et+O(t*(E)) -

Of course, similarly to the previous case,

{9t =0, h(z,£) = A} (11.8)
is the family of critical manifolds of ¢ labeled by z. There are no other critical points
due to the condition that W(z) # —A. On (11.8)

Hess(; )¢ = [€|

= /2(W(z)+ ),

which is positive since W (z) > —\. Hence stationary phase technique can be applied and

a derivation similar to the proof of theorem 5.2 produces the desired result.

Lemma 11.3. The kernel g(\,z,z) of Gy(\) obeys the estimate
g\, z,2)| < CaN—1273d (11.9)

where N is the same as in (5.6).
Proof. To simplify the exposition we restrict ourselves to the case d < 3. Let
P € C§°(B(0,2)) and ¢ =1 on B(0,1). We write

PGy = (FA+1)TTA-A+ )T

where
A = (-A+1)yYpGyp(-A+1) .
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Since d < 3, the kernel K(z — z) of (=A+1)~! obeys

/\K(m)|2da: < .

Since for z,z € B(0,1)
9\ z, 2)

= (K(z—), AK(- = 2)) ,

we have

l9(A, 2, 2)|
< ALK -
It is shown similarly to lemma 5.2 (see especially equations (5.17)—(5.18)) that

JA] < CaMV7127d,
where N is the same as in (4.6). The last two inequalities yield
g\ z,2)| < CatT127d

In the general case we replace (—A+1)~! by (—A+1)~[2]-1 which worsens the estimate

correspondingly.

Lemmas 11.2 and 11.3 imply that x * de — x * deg = O(al~%), provided (11.3) holds.

1—d)

This and the Tauberian technique (see section 7) yields that e — ey = O(« under

condition (11.3). Using now multiscale analysis of section 8, we remove the restriction

W(x) # —\. Since the previous result is applicable to the region
{z|W(z)+ Al =1},

it suffices to consider z from

{z| |W(z)+ A <1}
On this domain we introduce the coordinate scale

Uz) = M{YW(z)+ A +af (11.10)
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where M7 =2 sup |VW (z)|. A simple analysis, similar to one already done in the proof
B(0,2)

of theorem 8.3, shows that if we introduce the energy scale as

B[

flx) = Mpt(x)
(11.11)
~ [W(z)+ A7 +a3
then the shifted potential ¢(x) = W (x)+ X obeys (8.2)—(8.4). Moreover, the scales satisfy
fe=p.

As in the proof of theorem 8.3 we have to check that the rescaled potential
W) = f@)2(W(y+w)s) + )

obeys the initial restriction W(x) # 0. Indeed, we have
Ly + L(y)z)
Mit(y)

1
> 1—— sup |[VW(x
A B(0,1)| (z)]

W (@) =

1
> Z
-2

on B(0,1). Thus the previous result is applicable to the rescaled (in coordinate and

energy) Hamiltonian

H, = — (%)QA — W(z) (11.12)

and the unit ball B(0,1). Recall that this Hamiltonian is related to the original one by
fFPUWHLU®)™ = H, , (11.13)

where U(¢) is the unitary family realizing the scaling z +— y + £z . This relation implies
(@[ E(\, Ha)l2)
= (z[UOE\f? Ho)U(£) ™ 2) (11.14)
= £d<y + £$|E()\f2’ Hy)ly +£z) ,
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where we have used the notation (z|A|z) for the Schwartz kernel of an operator A. (Eqn
(11.14) reflects the fact that (x|A|z) is a function in z and density in z.) Using this
relation we derive as in theorem 8.1
le(z, z, A\, Hy) — eo(x, A\, Hy)|
< Cal=(e(x) f(z)) " ()
= Ca=U(z) " f(x)4 T,

Remembering (11.10) and (11.11), we deduce from this (11.1).
Now we return to the operator
L oo
In this section we will also use the following stronger version of Kato inequality (8.1):
C
I¢ull < ellAull + —]lul (11.16)

for any € > 0, for any u € D(A) and for some C independent of ¢ and of u.

Theorem 11.4. Assume Ky defined in (11.15) obeys conditions (11.16) and (8.2)—(8.4)
and let d > 3. Then for all x and for all 4 <0

‘6(1}, T, [, Kﬂ) - 60(.’1}, L, Kﬂ)‘

< [min (g D] Tmax () 627 (1.7

Proof. In the region {z | f(z)¢(z) > 8} one uses theorem 11.1 as a starting point
and then follows the proof of theorem 8.1. The connection between the Schwartz kernels

of spectral projections for the original and rescaled Schrodinger operators is given in

rT—y T —
I

e(x,z, 1, Kg) = E_de( y,f_2,u,Ha) , (11.18)

where Ho = [U(Q)KU (D) with a = £ and U(0): f(z) — £ f(w;y). We will

not repeat the arguments here referring the interested reader to the proof of theorem 8.1.
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Now we consider the region {z | f(z)¢(z) < 28} . First we notice that the explicit

formula
colw, 1, Kp) = Caf~*((a) +1)? (11.19)

where Cj is the volume of the unit d-sphere S¢ times 5 , implies that for © <0

0 < 60(-T1 ’ ) = C ’ ( )% ( )
1 Kﬂ 16 ~ 11.20

Thus in {z ‘ [(z)4(x) < B}, the function ey(x, u, Kg) is bounded by the r.h.s. of (11.17).
Lemmas 11.5 and 11.6 below yield for p <0 and for = in {z | f(z){(z) < 28}

—d

e(z,z,pu,Kg)| < Clmax (B £(z))] (11.21)

with C independent of p and of 3. Therefore |e(z,z,u, Kg)| is bounded by the r.h.s.
of eqn (11.17) in the region {z | f(z)l(z) <28} and for p < 0. This together with the

conclusions of the previous two paragraphs yields (11.17).
Lemma 11.5. Let Kg be defined by (11.15) with ¢ obeying (8.1)—(8.4). Then

f(z)l(z) )2(d+2) (11.22)

le(z, z, 1, Kg)| < Cl(x)”? max (T,l

for 4 <0 for all x and uniformly in 8 and in p .

Proof. We begin with a general remark. For a self-adjoint operator B on L2?(¢) we
introduce

AB, i) = (A + ) B Y B(u, By (A + 1)1EHT (11.23)

We have as in the proof of lemma 11.3 that

le(z, 2, i, B)| < ClIA(B, )l (11.24)

provided 1(z) =1 and 9(z') =1. Here C depends only on the dimension d. Now we

proceed to specific estimates.
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We rescale Kg using the transformation z — y + £z which maps it unitarily into
g—jH, where H = —1A, — ¢o(z) with ¢o(z) = 8726%¢(y + £z) . Using the properties of

f(x), we obtain

0" golo) <, (LY

< Cy(%f < C, onB(0,1),
where f = f(y). Pickup p <0, 9 € C(C)’O(B(z, 1)) and 1y € C'{)’O(B(z’,l)). Using

(11.25)

either lemma 4.2 or lemma 4.5, we obtain that

7 >2(d+2)

<C max(ﬁ, 1 A1(H, p, ¢i)

where

N[2 rd
Al(H7 H, 901) = ||(H+Z)[2]+1Q01E(IU”H)Q02(H_ Z)[2]+1|| ’

¢1 € C°(B(2,2)) and =1 on B(z,1) and ¢, € C3°(B(#,2)) andand =1 on B(Z',1)
and commuting (H + z')[%]Jrl one by one through ¢1/ps, and using estimates similar to

those employed in section 4, we obtain

d+2

|AL(H, i, 03)[| < C Y Ixafe(H)xzll
k=0

where x1 € C§°(B(2,3)) and =1 on B(z,2), x2 € C°(B(',3)) and =1 on B(,2)
and fr(A) = (]A]2+1)2E(y, A). By a special case of theorem 4.10, ||x1/x(H)x2| < C,
uniformly in 8 and p < 0. This together with the last two inequalities yields

2(d+2)
e 1)
B

uniformly in 8 and p < 0. Due to (11.24) this yields

IACH, p, )| < C max<

K )2(d+2) (11.26)

le(z, 2, H)| < C max(g,l

uniformly in # and p < 0. Remembering now (11.18) and taking there z =z =y, we

arrive at (11.22).
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Lemma 11.6. Assume that Kg is defined by (11.15) with ¢(x) obeying (11.16). Then
for any x and p <0
le(z,z,u, Kg)| < CB2¢ (11.27)

with C' independent of 3 and pu .

Proof. For some fixed y, the scaling z — y + 8%z maps Kg into S72H, where
H = —1A— ¢o(z) with ¢o(z) = B2¢(y + B2z) . It is readily checked that also the new

potential ¢o(z) satisfies inequality (11.16). By lemma 4.2
|AH, p, i)|| < C

uniformly in 8 and in g provided v¥; € C§° (B (0, 1)) and p < 0. This, in turn, yields,
due to (11.24), that
le(z,z,p, H)| < C

for z,2z € B(0,1) and g < 0. On the other hand the Schwarz kernels for E(u, Kg) and
E(u, H) are related as

rT—Yy z2—Y
pr o’ B

Taking here z = z = y and then using the previous inequality one obtains (11.27).

e(x,z,pu, Kg) = B_Zde( ,,B2u,H) .

Let 4(x) = min |z —y;| for some yi, ..., yar . Then performing integrations carefully

and using that

/ E(x)‘”daz%—/ Lz)Vde < CM ,
2z)<1 4(z)>1

provided 0 < 4 < 1 < v, we derive from theorem 11.4 the following
Corollary 11.7. Assume Kg, defined in (11.15), obeys (11.16) and (8.2)—(8.4) with {(x)
replaced by f1(z) = Lé(z) for some L > 0 and with f(z) = £(z)~2({(z))"% , where
{(xz) = min |z — y;| for some y1,...,ym . Let d = 3. Then for any p < 0 and for any
e (.1)
([ le(w. 5.1, K5) = enli s Ka)lPie)
< CLd—lM%ﬂl—d
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with C independent of (3, of p, of M , of the y; ’s and, in general, of ¢(x).

Remark 11.8. The condition d > 3 (or the extra term |W (z)+ A|{(4=3)/2 on the r.h.s.
of (11.1) for d = 1,2) stems from the fact that the oscillatory integral approximating
e(z,z,\, H,) (see equation (11.7)) contains no integration over z and therefore is more
singular than the integrals approximating the local traces above (see section 5). More

precisely, on the first step, in proving (11.6), we have to impose the condition
[Veh| > ¢ > 0 on &y

on the model problem which is stronger than the corresponding condition
\Vh| > ¢ > 0  oné,

which was used in theorem 7.1. Removing the former condition by scaling is harder than

the latter.
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Appendix: Stationary Phase Expansion

In this appendix we derive a stationary phase expansion for the integral

I\ o) = o ¢ / / e/ didy (A.1)

defined in (5.15)—(5.16). We have shown in the beginning of the proof of theorem 5.2 that

the critical manifold of ¢ on suppb is
CA = {0} X g)\ . (A2)

To compute the Hessian, ¢, of ¢ on C, we note that due to the initial condition

[0) ‘t:O: 0 we have

92,6 = O(t)

on supp b. This together with (5.22) and (5.24) yields

g = (_5_ o _gh) +O) . (A.3)

This expression shows that ¢"|c, is non-degenerate in the direction transversal to Cj,
ie. on N, =T,26T,Cy, o € Cy. The determinant of the restriction of ¢”(c) to N, ,
oe€Cy,is

dety(¢") = —|Vh|? (A.4)

and the signature of this restriction, which is the difference between the number of positive

and negative eigenvalues, is

sguy(4”) = 0. (4.5)

Denote by ¢”(c)™! the inverse of the restriction of ¢" (o) to N, , o € Cy . In what
follows z stands for (¢,y) € 2¢%1, ¢ is a point in Cy and w, a point in &, . We often

identify ¢ = (0, w) with w. The main result of this appendix is
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Theorem A.l.

I\ @) = 27ra1_d]’§k!_1 /e A [(—%aL)k(bpew/a) . [Vh|~?dw (46)
+ O(aNT179) |
where dw is the surface measure on &) ,
L = (¢"(o)"'V,V), (A7)
with V , the gradient in (t,y), p is a smooth function on 2¢ obeying
pley, = |Vh|. (A.8)
p is independent of ¢ , (A.9)
where £ = ¢/|¢|, and for o € Cy,
0 = 62) = 6(0) — 32— 0.6 ()= = ) (410

2

Proof. Since ¢" (o) is non-degenerate on N, , o € C), one can apply a generalized
stationary phase method (see e.g. [Meyer 1967, Chaz 1974]) in order to find an expansion
of I(A, ). We take a more explicit route by reducing the problem, with help of change
of variables, to a standard stationary phase method.

Since by lemma A.1, the phase function ¢ has no critical points on supp b away from
C) , it suffices to restrict our attention to a neighbourhood of C) . Thus in what follows
we assume tacitly that the integration extends to a neighbourhood of C'y. Hence we can
pass from y to new coordinates (s,w), where s € [—¢,¢| for some sufficiently small e

and w € &, , using the map g: [—¢,¢] x £x — ¢, defined by
g(s,w) = w+ sVh(w) . (A.11)
Denote by dw a natural measure on &) , then

dy = p(s,w)dsdw , (A.12)
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where p is the absolute value of the Jacobian of the transformation (A.11). The function

p is smooth and has the following properties
ps,w) = |[Vh(w)|+ O(s) (4.13)

and

p is independent of ¢, (A.14)

where £ = £/|¢|. The first property is obvious, to explain the second one we notice that

Ex = Fyx 81, (A.15)
where F)\ C ¢ x T is given by
Fx = {(z,k)| f(z,k) = A} (A.16)
with
fo k) = %1& W) . (A.17)

Thus the natural measure on £, can be written as
dw = dpdf (A.18)

where dy and df are the surface measures on F) and S% 1 respectively. Transformation

(A.11) can be written as
T = Qg+ sawf((p)

&l = or + s0kf(p) (A.19)

A~

£ =0,
where ¢ = (¢, @) € Fx and 6 € S% 1. Consequently, the Jacobian of (A.11) is equal
to the Jacobian of (A.19) and is therefore independent of ¢ .

Now make change of variables (A.11) in integral (A.1):

I = a_d///ei‘g/azﬁdtdsdw, (A.20)
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where the integration extends over x [—¢,e] X €y,

¢ = ¢oy (A.21)

and

b = bog. (A.22)

Note that in a careful analysis we would have to split integral (A.1l) into two integrals,
one over a neighbourhood of Cy and the other over the complement, then (A.20) would
represent the former integral. Now we freeze the variable w and consider the remaining

integral
L\ a,w) = ‘//ei‘i/ai)ﬁdtds. (A.23)

We want to apply a stationary phase expansion to this integral. This is possible due to

Lemma A.2. Let Vh #0 on &, . Then for t sufficiently small and w € €, fixed, (0,0)

is the only critical point of ¢ . Moreover, this critical point is non-degenerate.

The proof of this lemma is done similarly to the statement in the beginning of the

proof of theorem 5.2 and of equations (A.3)—(A.4). We use that

O(pog) = (Od)og (A.24)
di(¢og) = (Vh-Vy6)og . (4.25)
The first relation is straightforward, the second one uses that Oxf = 0Oj¢jh|¢= and

Oig) = £ - 0¢. We will not repeat the whole proof here but just write out some of the

expressions: .
—0ip = hog— A+ O(t)
= s|Vh(w)* + O(s*) + O(t) ,
8¢ = —|Vh(w)|’t +O(t?) + O(ts)
and

~ J— . —_ 2
e ( E‘VZ‘VQV Woh‘ >+O(t). (A.26)
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Here and in what follows the leading term is evaluation on C, ie. at t =s =0. In

particular

det ¢ = —|VA[*+0O(t) . (A.27)

Hence for ¢ sufficiently small and all s
. 1
det ¢"| > 5\Vh|4 >0 > 0. (A.28)

Due to lemma A.4 and equation (A.28) a stationary phase expansion (see [AsadaFuj 1978,

Horm I] is applicable to I; and yields
I1 ()‘7 «, ’LU) = 27T0:|det Q;H (w)|_% e’i&(w)/ae’%sgn &Il(w)

P \*. - A.29
(%O[L) bﬁeze/a] +pN, ( )

t=s=0

where sgn A is the difference between positive and negative eigenvalues of A,

L = (¢"(w)™1d,0) (A.30)

with 0 = (0, 0s) , ) )
0(t,s,w) = ¢(t,s,w)

— {6 5), B ) (1, ))

and the remainder py is compactly supported in w and ¢ and obeys the estimates

(A.31)

Ppy = O . (A.32)
Now we compute
p(w) = 0, (A.33)
sgn ¢’ (w) = 0, (A.34)
det ¢ (w) = —|Vh[*, (A.35)
T — 0 —|Vh|_2
¢ (w)™t = (—|Vh|—2 Al ) : (A.36)



It is a simple exercise to check with help of (A.24) and (A.25) that

L(fog) = (Lf)og, (A.37)

where L and L are given by (A.30) and (A.7), respectively. Now we define p and 6
through

p = pog (A.38)

and

ey
Il

fog (A.39)

and similarly for py . Substituting (A.33)—(A.39) into (A.29), taking into account that

fogli=s=0 = fle,

and integrating over w € &, , we arrive at (A.6).
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Supplement

In this supplement we give a direct and elementary proof of theorem 7.5.

Theorem S.1. Let g be a smooth and bounded function, O(A~%73) as A — +oo to-

gether with its derivatives. Let 1 € C§°(B(0,1)). Then

tr (bo(Ha) = o~ [ f P(@)g bz, ) dede

+ O(a?

(8.1)

Proof. We use representation (7.1). Using a smooth partition of unity we split g(\)
into a piece supported in A < — sup W —1 and one supported in A > — SUPp(0,2) wW—-2.
B(0,2)
The latter piece is broken up again by applying a smooth partition of unity to its « -Fourier

transform. As a result we achieve the decomposition

g = g1+92+9s3,

where g¢; are smooth and bounded, g3 is supported in (—oo,— sup W — 1], g5 =
B(0,2)

O(|A[7473) as |A| = oo and its a-Fourier transform is supported in \(—1T,317T) and

the a-Fourier transform of g; is supported in [—T,T]. Here T > 0 is sufficiently small

(determined, essentially, by the existence interval for the underlying classical flow). We

have

lgs(H)9ll: < Ca™ (5.2)

for any M > 0 due to theorem 4.4.
Next, we claim that

(H +1)*?g3(H) = O(a™) (5.3)

for any M . Indeed,
(H+4)™ / i (=U (1)dt

- / 4a(=t) (D + i)™V (t)dt
_ /((—Dt i)™ (—) U (1)t
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Using this, we estimate for m = d + 2

|(H + i)™ g2(H)|
1
T 2ma S te

< c/ (] /a)~Mdt
[t|>1e

= 0(aM),
for any M > 0, which yields (S.3). Estimate (4.5) together with equation (S.3) yields

[((=D¢ +14)™ 5™ (—t/ )| dt

lg2(H)%[ln = O(aM~47) (5-4)

Next, we proceed to the function g; . Recall that F(¢) is the Fourier integral operator
constructed in section 5. Pick up ¢ in the definition of F(¢) obeying ¢ =1 on (supp X

4) N supp g(h) . Denote as before

and write .
g(H) = — [ g1(—t)F(t)dt
2T
1 (S.5)
— g1(—t)G(t)dt .
o =060
By theorem 6.2, for N the same as in (5.6)
| [ a(-0G@itp@) < ca¥. (5.6)
Now we study the first term on the r.h.s. of (S.5).
Lemma S.2.
i [ (0P
(S.7)

= 2mald / / Yg1(h)dzdé + O(a379) .
Proof. In this proof we omit the subindex 1 at g¢; . Using the definition of g(D;)

and the Plancherel formula, we obtain

(S.8)



Remembering definition (5.1) of F(t), we find

fr ) / 1F()dt

(S.9)
= 27ra1_d//¢g(Dt)(ae“ﬁ/a) ‘t:O dzdf
where, recall, ¢ =S5 —z-£. We claim that
9(Dy)(ae™®’ ™) |,_, = g(h)e
(S.10)

1
— iagoﬁ -VWgq"(h) + o?r

with r, a smooth and compactly supported symbol obeying

//\T\dwdi < C (S.11)

with the constant independent of «. We prove this relation. First, using that ¢ ‘ i—o="0

and a |,_, = ¢, we expand in ¢:

¢ = to1 +t3ps + 1303

and
a = @+th +t%by
where
¢ = 0S|,
$2 = 075 |,y
by = O ‘t:O

and ¢3 and by are smooth functions on [T, T|x B(0,2)x B(0, K+3) with by compactly
supported in z and £. Combining these two expansions, we obtain
ae?!® = et 1 th) + t2ipgs /)

2 n
; t S.12
coserer 3 (£, (s.12)

n=0

where ¢, are smooth functions on [-T,7T] x B(0,2) x B(0, K + 3) , compactly supported
in £ and £. Using that
g(D)e ™ = g(—¢q)eirt/e (5.13)
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and that
[9(Dy), "] = (ia)" g™ (Dy)
N Z O™ an—m) | (S.14)

m=1

we find ‘
g(Dy)(ae'*)
= FHg(—¢n)p — dag' (—$1)br — iag” (= d1) ]
4
+ a2 Z(i)ng(n)(Dt)(Cneidlt/a) (S.15)
n=2

4
+ Z ot™a®*™™) .
m=1

By the Hamilton-Jacobi equation, ¢; = —h(z,£) and by the definition of a and initial

conditions (5.8), by = 0. Using, in addition, (5.24), we conclude that

9(D) (e’ |,_g

1 (5.16)
= g(h)p + Fapg - VWg"(h) +a’r
where
4 .
ro= Y (i)"g" (D) (cae ™) |, _, - (5.17)
n=2
In order to estimate the last term we use the representation
1 > )
g(Dy) = e . g(s)e”Dt/o‘ds, (S.18)

isDi/a

where §(s) is the a-Fourier transform of ¢, and the fact that e is a shift by s.

This yields

g(n) (Dt) (Cne—iht/a) ‘t:o
1 — ) (5.19)
- (n) —ths/a
oo (s)e cn(s, 2, €)ds .

Remembering now that § is supported in [—7,T| and that

1 —
— (n) d
a/lg (s)|ds
= /|3\”|Qn°rmal(s)|ds < o0
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and using that ¢, are smooth and compactly supported in z and ¢, provided |¢t| < T,
we derive (S.11). Thus (S.10)—(S.11) is proved.

Now, since ¢(z,£) and h(z,£) are even in &, we have
/gof-VWg”(h)dxdf =0. (5.20)

This together with (S.9)—(S.11) and the fact that ¢ =1 on (supp® x ¢)Nsupp g(h) yields
(S.7).
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